ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Low Noise Transistors

PNP Silicon

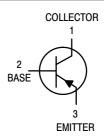
Features

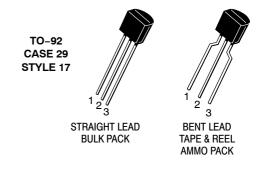
• These are Pb-Free Devices*

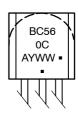
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-45	Vdc
Collector - Base Voltage	V _{CBO}	-50	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current - Continuous	Ic	-100	mAdc
Total Power Dissipation @ T _A = 25°C Derate above T _A = 25°C	P _D	625 5.0	mW mW/°C
Total Power Dissipation @ T _A = 25°C Derate above T _A = 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping		
BC560CG	TO-92 (Pb-Free)	5000 Units / Bulk		
BC560CZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack		

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	DFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage $(I_C = -10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-45	_	-	Vdc
Collector – Base Breakdown Voltage ($I_C = -10 \mu Adc$, $I_E = 0$)	V _{(BR)CBO}	-50	_	-	Vdc
Emitter – Base Breakdown Voltage ($I_E = -10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	-5.0	-	_	Vdc
Collector Cutoff Current $(V_{CB} = -30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = -30 \text{ Vdc}, I_E = 0, T_A = +125^{\circ}\text{C})$	I _{CBO}	<u>-</u>	- -	-15 -5.0	nAdc μAdc
Emitter Cutoff Current (V _{EB} = -4.0 Vdc, I _C = 0)	I _{EBO}	-	_	-15	nAdc
ON CHARACTERISTICS					
DC Current Gain $ \begin{array}{l} \text{(I}_C = -10 \ \mu \text{Adc, V}_{CE} = -5.0 \ \text{Vdc)} \\ \text{(I}_C = -2.0 \ \text{mAdc, V}_{CE} = -5.0 \ \text{Vdc)} \end{array} $	h _{FE}	100 380	270 500	- 800	-
	V _{CE(sat)}	- - -	-0.075 -0.3 -0.25	-0.25 -0.6 -	Vdc
Base – Emitter Saturation Voltage (I _C = –100 mAdc, I _B = –5.0 mAdc)	V _{BE(sat)}	-	-1.1	-	Vdc
Base–Emitter On Voltage $ \begin{array}{l} (I_C=-10~\mu Adc,~V_{CE}=-5.0~Vdc)\\ (I_C=-100~\mu Adc,~V_{CE}=-5.0~Vdc)\\ (I_C=-2.0~m Adc,~V_{CE}=-5.0~Vdc) \end{array} $	V _{BE(on)}	- - -0.55	-0.52 -0.55 -0.62	- - -0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product (I _C = -10 mAdc, V _{CE} = -5.0 Vdc, f = 100 MHz)	f _T	-	250	-	MHz
Collector–Base Capacitance $(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cbo}	-	2.5	-	pF
Small–Signal Current Gain ($I_C = -2.0 \text{ mAdc}, V_{CE} = -5.0 \text{ V}, f = 1.0 \text{ kHz}$)	h _{fe}	450	600	900	-
Noise Figure $ \begin{array}{l} \text{Noise Figure} \\ \text{(I}_{C} = -200 \ \mu Adc, \ V_{CE} = -5.0 \ Vdc, \ R_{S} = 2.0 \ k\Omega, \ f = 1.0 \ kHz)} \\ \text{(I}_{C} = -200 \ \mu Adc, \ V_{CE} = -5.0 \ Vdc, \ R_{S} = 100 \ k\Omega, \ f = 1.0 \ kHz, \ \Delta f = 200 \ kHz)} \end{array} $	NF ₁ NF ₂	_ _	0.5 -	2.0 10	dB

^{1.} I_B is value for which I_C = -11 mA at V_{CE} = -1.0 V. 2. Pulse test = 300 μ s - Duty cycle = 2%.

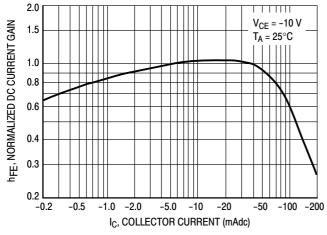


Figure 1. Normalized DC Current Gain

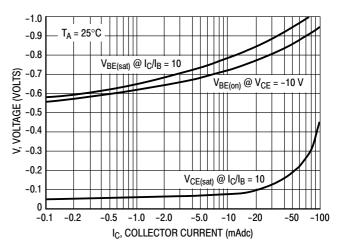


Figure 2. "Saturation" and "On" Voltages

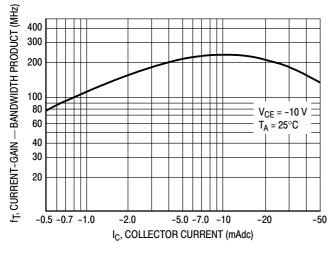


Figure 3. Current-Gain — Bandwidth Product

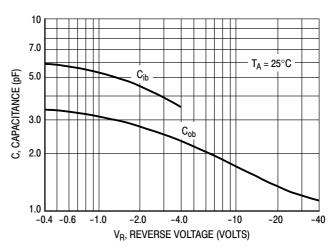


Figure 4. Capacitance

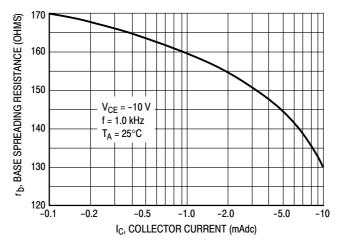
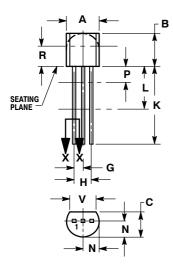
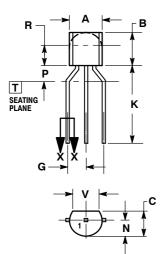



Figure 5. Base Spreading Resistance

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AM**


STRAIGHT LEAD **BULK PACK**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN MAX	
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 CONTOUR OF PACKAGE BEYOND
- DIMENSION R IS UNCONTROLLED
- LEAD DIMENSION IS UNCONTROLLED IN PAND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
C	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
V	3.43		

STYLE 17:

COLLECTOR PIN 1.

BASE

EMITTER

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, un semiconductor and are registered trademarks of Semiconductor Components industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical expents. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

BC560C BC560CG BC560CZL1 BC560CZL1G