
1

www.keyestudio.com

Keyestudio Raspberry Pi Pico 24 in 1 Sensor Kit

Contents

1. Introduction..3

2. Kit List ... 4

Keyestudio 8002b Audio Power Amplifier ...4

3. Raspberry Pi Pico and Thonny...8

3.1. Raspberry Pi Pico..8

3.2. MicroPython IDE-----Thonny...15

Download and Burn Firmware...16

Download and Install Thonny IDE ..17

3.3 Install Drivers .. 23

3.4 Thonny User Interface ... 26

3.5 Add Modules .. 36

4. Projects .. 42

Project 1: Lighting up LED...42

Project 2: Traffic Light Module .. 48

Project 3: Button Sensor.. 52

Project 4: Obstacle Avoidance Sensor.. 58

Project 5: Tilt Module ..63

Project 6: Reed Switch Module... 68

Project 7: PIR Motion Sensor ... 73

2

www.keyestudio.com

Project 8: Active Buzzer ..78

Project 9: 8002b Audio Power Amplifier ..82

Project 10: RGB Module ...88

Project 11: Potentiometer ... 99

Project 12: Sound Sensor .. 104

Project 13: Photoresistor ...109

Project 14: NTC-MF52AT Thermistor ..114

Project 15 Thin-film Pressure Sensor ..119

Project 16: Joystick Module..124

Project 17: SK6812 RGB Module.. 129

Project 18: Rotary Encoder ... 137

Project 19: Servo Control .. 144

Project 20: Ultrasonic Sensor ...152

Project 21: IR Receiver Module ...159

Project 22: DS1307 Clock Module... 167

Project 23: TM1650 4-Digit Tube Display ... 175

Project 24: HT16K33_8X8 Dot Matrix Module ...188

5. Comprehensive Experiments ...196

Project 25: Breathing LED... 196

Project 26: Button-controlled LED... 201

Project 27: Alarm Experiment ..205

Project 28: PIR Motion Sensor ...209

3

www.keyestudio.com

Project 29: Speaker Module... 213

Project 30: Rotary Encoder ... 220

Project 31: Rotary Potentiometer ...224

Project 32: Sound Activated Light..227

Project 33: RGB Module ...230

Project 34: Ultrasonic Sensor ...235

Project 35: IR Remote Control ...244

Project 36: Comprehensive Experiment ...249

6. Resources: .. 259

1. Introduction

The Keyestudio Raspberry Pi Pico 24 in 1 sensor kit mainly contains 24

commonly used sensors/modules, the Raspberry Pi Pico board, the

Raspberry Pi Pico expansion board and Dupont wires.

The 24 sensors and modules are fully compatible with the Raspberry Pi

Pico shield. You only need to stack the Raspberry Pi Pico board onto the

Raspberry Pi Pico shield, and hook up them with Dupont wires, which is

simple and convenient.

To make you master the electronic knowledge, detailed tutorials

(MicroPython), schematic diagrams, wiring methods and test code are

included. Through these projects, you will have a better understanding

4

www.keyestudio.com

about programming, logic and electronics.

2. Kit List

No. Picture Name QTY

1
Keyestudio White LED

Module
1

2
Keyestudio Common

Cathode RGB Module
1

3
Keyestudio Traffic

Lights Module
1

4
Keyestudio Active

Buzzer
1

5
Keyestudio 8002b

Audio Power Amplifier
1

6
Keyestudio Button

Module
1

5

www.keyestudio.com

7 Keyestudio Tilt Sensor 1

8
Keyestudio PIR Motion

Sensor
1

9
Keyestudio Obstacle

Avoidance Sensor
1

10
Keyestudio 6812 RGB

Module
1

11

Keyestudio

NTC-MF52AT Analog

Thermistor

1

12
Keyestudio

Photoresistor
1

13
Keyestudio Sound

Sensor
1

14
Keyestudio

Rotary Potentiometer
1

6

www.keyestudio.com

15 Keyestudio IR Receiver 1

16
Keyestudio Reed

Switch Sensor
1

17
Keyestudio Rotary

Encoder Module
1

18
Keyestudio Joystick

Module
1

19
Keyestudio HT16K33

8X8 Dot Matrix Module
1

20
Keyestudio TM1650

4-Digit Tube Display
1

21
Keyestudio Thin-film

Pressure Sensor
1

22
Keyestudio DS1307

Clock Sensor
1

7

www.keyestudio.com

23
Keyestudio SR01

Ultrasonic Sensor
1

24 9G 90° Servo 1

25 Raspberry Pi Pico Board 1

26
Keyestudio Raspberry

Pico IO Shield
1

27
Keyestudio JMFP-4

17-Key Remote Control
1

28 USB Cable 1

29 F-F Dupont Wire 1

8

www.keyestudio.com

3. Raspberry Pi Pico and Thonny

3.1. Raspberry Pi Pico

At the end of January 2021, the Raspberry Pi Foundation launched the

Raspberry Pi Pico, which received a lot of attention due to its

high-performance and low-cost.

The size of Pico is 21mm *51mm, which is similar to Arduino Nano’s.

Raspberry Pi Pico is a low-cost, high-performance microcontroller board

9

www.keyestudio.com

with flexible digital interfaces. It integrates RP2040 microcontroller chip

designed by Raspberry Pi, with dual-core Arm Cortex M0+ processor

running up to 133 MHz, embedded 264KB of SRAM and 2MB of on-board

Flash memory, as well as 26 multi-function GPIO pins. For software

development, either Raspberry Pi's C/C++ SDK, or the MicroPython is

available. In this tutorial, we will use MicroPython.

The bare board does not come with pins and you need to solder them

yourself. This is a well-made board that can also be used as an SMD

component and soldered directly to a printed circuit board.

10

www.keyestudio.com

The most predominant feature on the board is the microUSB connector at

one end. This is used both for communication and to supply power to the

Pico. An on-board LED is mounted next to the microUSB connector, it is

internally connected to GPIO pin 25. It’s worthwhile to note that this is the

only LED on the entire Pico board.

The BOOTSEL pushbutton switch is mounted a bit down from the LED, it

allows you to change the boot mode of the Pico so that you can load

MicroPython onto it and perform drag-and-drop programming.

At the bottom of the board, you’ll see three connections, these are for a

serial Debug option that we won’t be exploring here.

11

www.keyestudio.com

In the center of the board is the brains of the whole thing, the RP2040 MCU,

which is capable of supporting up to 16MB of off-chip Flash memory,

although in the Pico there is only 4MB.

 Dual-core 32-bit Arm Cortex M0+ processor

 Runs at 48MHz, but can be overclocked to 133MHz

 30 GPIO pins(26 exposed)

 Can support USB Host or Device mode

 8 Programmable I/O(PIO) state machines

The Pico is a 3.3V logic device, however, it can be powered with a range of

power supplies thanks to a built-in voltage converter and regulator.

GND: Ground connection. 8 grounding wires plus an additional one on the

12

www.keyestudio.com

3-pin Debug connector. They are square as opposed to rounded like the

other connections.

VBUS: This is the power from the microUSB bus, 5V. If the Pico is not being

powered by the microUSB connector then there will be no output here.

VSYS: This is the input voltage, which can range from 2 to 5V. The on-board

voltage converter will change it to 3.3V for the Pico.

3V3: This is a 3.3V output from the Pico’s internal regulator. It can be used

to power additional components, providing you keep the load under

300ma.

3V3_EN: You can use this input to disable the Pico’ s internal voltage

regulator, which will shut off the Pico and any components powered by it.

RUN: It can enable or disable the RP2040 microcontroller, it can also reset

it.

13

www.keyestudio.com

There are 26 exposed GPIO connections on the Raspberry Pi Pico

board.They are laid out pretty-well in order, with a“gap”between GP22 and

GP26 (those“missing”pins are used internally). All these pins have multiple

functions, and you can configure up to 16 of them for PWM. There are two

I2C buses, two UARTs, and two SPI buses, these can be configured to use a

wide variety of GPIO pins.

The Pico has three Analog-to-Digital Converters, they are ADC0-GP26,

ADC1-GP27, ADC2-GP28, and plus ADC-VREF converter used internally for

an on-board temperature sensor. Note: The ADCs have a 12-bit resolution.

However, the MicroPython has scaled the 12-bit resolution into a 16-bit

resolution, which means that we will receive ADC values from 0 to 65535.

14

www.keyestudio.com

The microcontroller’s working voltage is 3.3V, indicating that 0

corresponds to 0V and 65535 corresponds to 3.3V.

You can also provide an external precision voltage-reference on the

ADC_VREF pin. One of the grounds, the ADC_GND on pin 33 is used as a

ground point for that reference.

Raspberry Pi Pico Configuration

Dual-core Arm Cortex-M0 + @ 133MHz

2 × SPI, 2 × I2C, 2 × UART

264KB of SRAM, and 2MB of on-board Flash memory

16 PWM channels

QSPI bus controller, supporting up to 16 MB of

external Flash memory

USB 1.1 with host and device support

DMA controller

8 × Programmable I/O (PIO) state machines for

custom peripheral support

30 GPIO pins, of which 4 can optionally be used as

analog inputs

Drag-and-drop programming using mass storage over

USB

15

www.keyestudio.com

Pinout Diagram:

Raspberry Pi did release a ton of technical documentation, plus a great

guide called Get Started with MicroPython on Raspberry Pi Pico. It ’ s

available in softcover, and as a PDF download as well. For more information,

please refer to:

https://www.raspberrypi.com/products/raspberry-pi-pico/

3.2. MicroPython IDE-----Thonny

Programming the Pico: You could use C/C++ or MicroPython.

16

www.keyestudio.com

MicroPython is an interpreted language that is made specifically for

microcontrollers. Many microcontroller users have familiarity with C/C++

as they are used on the Arduino and ESP32 boards. In this tutorial, we will

use Thonny recommended by Raspberry Pi. Thonny bills itself as a“Python

IDE for Beginners”, and it is available for Windows, Mac OSX and Linux. It

was also part of the Raspberry Pi operating system(formerly Raspbian).

Boot and Install MicroPython: The first thing that we need to do is to get

MicroPython installed onto the Pico.

Download and Burn Firmware

Go to the official website to download the UF2 file:

https://www.raspberrypi.com/documentation/microcontrollers/#getting-s

tarted-with-micropython

What I downloaded is . Once the

download is complete, we proceed to burn the firmware.

With BOOTSEL held down, then plug the Pico into Raspberry Pi or your

computer’s USB port.

Release it after the connection was finished. You should see a drive

appearing on your computer with the name“RPI-RP2”.

https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，
https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，

17

www.keyestudio.com

Move the UF2 file into“RPI-RP2”, and the Raspberry Pi Pico will

automatically restart. At this point, the burning is complete.

Download and Install Thonny IDE

Enter the official website to download Thonny, we should download the

latest version for Windows.

Link: https://thonny.org/

18

www.keyestudio.com

After downloading, we start installing the software. Click“Next”, then click

"I accept the agreement" and click“Next ”again. After that, we choose

"Create desktop icon" and click“Next”, or just click "Next" to go to the next

step (you can open the file in the corresponding folder).

19

www.keyestudio.com

When we see the contents shown below, click "Install" to complete the

installation.

Finally, click "Finish".

Now we run the Thonny software. First, choose the language we need and

“Raspberry Pi”in“Initial settings”, then click“Let’s go!”.

20

www.keyestudio.com

Next, we will see the interface as shown below.

Click on the text in the top right of the window to switch to "Regular

Mode". Then restart the program, the interface will be like this as illustrated

21

www.keyestudio.com

below.

Click on the word“Python”followed by a version number at the

bottom-right of the Thonny window, then choose“MicroPython (Raspberry

Pi Pico)”.

22

www.keyestudio.com

The Raspberry Pi Pico interpreter is only available in the latest version of

Thonny. If you ’ re running an older version, you can ’ t choose the

corresponding interpreter. After choosing the interpreter, the interface will

be like this as follows.

23

www.keyestudio.com

3.3 Install Drivers

Wire the Pi Pico board with the USB port of a computer via a MicroUSB. If

the Pi Pico shield has installed MicroPython, and installed“Board CDC ”on

the computer, then it will shows corresponding ports of“Pi Pico Serial Port

（COM）”on Device Manager. If you have a Raspberry Pi, you can connect

the Pico to the Raspberry Pi directly. The Raspberry Pi has a lot of built-in

software that can be used directly. If wire the Pico with the computer,

24

www.keyestudio.com

please follow the steps below.

Windows 10

When plug the Pico into the computer, the system will automatically

identify serial port and install corresponding driver. You can find“USB

Serial”on Device Manager. On my computer is COM4. You can find the

corresponding COM port in Thonny options (Tools-Options-Interpreter).

25

www.keyestudio.com

If it shows the following information, indicating that your Pico board is

sucessfully connected to the computer.

MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with RP2040

Type “help()” for more information.

Then we input the following command behind >>>.

machine.Pin(25, machine.Pin.OUT).value(1)

26

www.keyestudio.com

Press“Enter”, if the on-board LED lights up, it means that Thonny works.

3.4 Thonny User Interface

After installing the IDE and the driver, now we will introduce Thonny user

interface. At the top is the main menu, there are“File”,“Edit”,“View”,

“Run”,“Tools”and“Help”.

27

www.keyestudio.com

Click“File”, it shows some operations related to files.

28

www.keyestudio.com

Click“Edit”, these are some options about code, such as copying, cutting,

pasting.

29

www.keyestudio.com

In the View drop-down menu, these are the tools to assist you. For example,

if we do not tick Shell (the Shell is the“command line”of the Pico, and you

can execute code directly here.), the result won’t be displayed. Click

“Files”, the files we saved will be shown on the left.

30

www.keyestudio.com

We can select interpreter in the Run drop-down menu, there are also some

shortcuts used in programming.

31

www.keyestudio.com

In Tools menu, we can select interpreter, font and import modules, etc.

32

www.keyestudio.com

33

www.keyestudio.com

In Help menu, we will see“Help contents”,“Version history”and more.

The icons below the main menu are our commonly used tool shortcuts.

34

www.keyestudio.com

When we open or save files, it will shows the following contents.

We can open programs saved on the computer or the Pico, or save them

on This computer or Raspberry Pi Pico.

Copy the code below to the Thonny and save it to the computer as test.py.

35

www.keyestudio.com

Click to run the code, the on-board LED will blink at 1 second

intervals, then click to stop, the LED won’t blink. If we unplug the

MicroUSB cable and plug it in again, the LED won’t blink after powering

up. This is because we did not name the file main.py and save it to the Pico.

Click“File”, then click“Save as...”to choose Raspberry Pi Pico. After that,

enter main.py as the file name (don’t forget to enter the .py file extension)

and click“OK”. Run the code again, the LED will continue to blink.

36

www.keyestudio.com

When we unplug the cable again, then plug it in and power on, the LED will

blink. This is because the Raspberry Pi Pico starts running the program

saved on main.py after powering up.

3.5 Add Modules

37

www.keyestudio.com

Python is a powerful language due to its modules. Python scripting

language with the most rich and powerful class library, enough to support

the vast majority of day-to-day applications. By importing modules, this

makes it easier for us when using some complex sensors.

The method is simple, just save the module that we need to the Pico, or

open the file saved on our computer, click“File”to choose“Save as”, then

save it to the Pico board (right click the mouse, you can delete files). For

instance, I saved some library files required for these courses on my Pico.

Click“View”to choose“Files”, they will be displayed on the left of the

interface.

38

www.keyestudio.com

When using sensors, we can import the corresponding modules directly.

39

www.keyestudio.com

3.6 Keyestudio Raspberry Pico IO Shield

(1) Overview

The Keyestudio Raspberry Pico IO shield is designed for Raspberry Pi Pico.

No soldering required. To make the connection easier, the interfaces on the

shield have silkscreen labels. The silkscreen labels of the 3pin interface

generally are G, V, S. On the shield, G represents GND, V represents the VCC

interface (3.3V), and S represents digital ports or analog ports. The pitch of

the pin header on the shield is 2.54 mm. The sequence of the pin header is

the same as the Pico board’s when wiring. The shield also comes with a

reset button, a PWR power indicator and four holes.

The shield offers a variety of communication interfaces including I2C, UART,

SPI, analog IO and digital IO, and provides an interface of power supply

ranging from 6.5V to 12V.

40

www.keyestudio.com

Specifications:

Output current: ≦500mA

DC input voltage: 6.5 - 12V

Output voltage: DC 3.3V/5V

Ambient temperature(recommended): -10°C ~ 50°C

Dimensions: 45.339MM *83.617MM

Pin pitch: 2.54mm

Schematic diagram

Pinout

41

www.keyestudio.com

As shown below, stack the Raspberry Pi Pico board onto the Raspberry Pi

Pico shield.

42

www.keyestudio.com

4. Projects

There are 24 sensors and modules in this kit. Next, we will analyze and

introduce how they work step by step. Interface sensors with the Raspberry

Pi Pico board and Pico shield, run test codes then observe experimental

phenomenon.

Note: please wire up components according to the given connection

diagrams.

Project 1: Lighting up LED

Overview

In this project, we will make an experiment to light up the white LED

module. The high and low levels can be controlled by programming, then

43

www.keyestudio.com

the state of the LED can be controlled.

Working Principle

The two circuit diagrams are given. The left one is wrong wiring-up

diagram. Why? Theoretically, when the S terminal outputs high levels, LED

will receive the voltage and light up.

Due to limitation of IO ports of Pico board, weak current can’t make LED

brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up.

When the S terminal is a high level, the triode Q1 will be connected and

LED will light up(note: current passes through LED and R3 to reach GND by

VCC not IO ports). Conversely, when the S terminal is a low level, the triode

Q1 will be disconnected and LED will go off.

The triode Q1 is equal to a switch and R1 and R3 stand for limited resistors

which can curb the size of current to prevent from burning out

components

44

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

White LED

Module*1

3P

Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

45

www.keyestudio.com

Test Code：

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.1
* turn on led
* http://www.keyestudio.com

'''
from machine import Pin
led = Pin(0, Pin.OUT)# create led, connect LED to pin 0，and set pin0 to OUTPUT
led.value(1)# high levels

Code 2：
'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.2
* Blink
* http://www.keyestudio.com

'''
from machine import Pin
import time

led = Pin(0, Pin.OUT)# create led, connect LED to pin 0，and set pin0 to OUTPUT
while True:

led.value(1)# led lights up
time.sleep(1)# wait for 1s

led.value(0)# led goes off

46

www.keyestudio.com

time.sleep(1)# wait for 1s

Code Explanation

Machine module is indispensable, we will use import machine or from

machine import... to program pico with microPython.

time.sleep() function is used to set delayed time, as time.sleep(0.01),

which means, the delayed time is 10ms.

1. led = Pin(0, Pin.OUT)，created a pin example and we name led.

0 is indicative of connected pin GP0，Pin.OUT represents output mode，

can use .value() to output high levels (3.3V)led.value(1) or low levels

(0V)led.value(0)。

import machine is used to import modules. When creating pins examples,

it will change into led = machine.Pin(0, machine.Pin.OUT)

2. while True is loop function，

It means that sentences under this function will loop unless True changes

into False. For the function while，led.value(1), outputs high levels to the

pin 0; then LED lights up. Then the delayed function time.sleep(1) will wait

for 1s. When led.value(0) output low levels to the pin 0, the LED will go off，

47

www.keyestudio.com

and the function time.sleep(1) will wait for 1s, cyclically, and LED will flash.

Test Result

Code 1：upload the code and power on，the white LED lights up

Code 2 ： upload the code and power on, the white LED flashes with an

interval of 1s.

48

www.keyestudio.com

Project 2: Traffic Light Module

Overview

In this lesson, we will learn how to control multiple LED lights and simulate

the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian

crossings, and other locations to control flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

In previous lesson, we already know how to control an LED. In this part, we

only need to control three separated LEDs. Output high levels to the signal

49

www.keyestudio.com

R(3.3V), then the red LED will be on.

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico

Shield*1

Keyestudio

DIY Traffic

Lights

Module*1

5P

Dupont

Wire *1

Micro

USB

Cable*1

50

www.keyestudio.com

Wiring Diagram

Test Code
'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 2
* Traffic_Light
* http://www.keyestudio.com

'''
import machine
import time

led_red = machine.Pin(14, machine.Pin.OUT)
led_amber = machine.Pin(13, machine.Pin.OUT)
led_green = machine.Pin(12, machine.Pin.OUT)

while True:
led_green.value(1) # the green light is on for 5s
time.sleep(5)# after 5s
led_green.value(0)# the green LED will go off
for i in range(3):# the yellow light is on for 3s

led_amber.value(1
time.sleep(0.5)
led_amber.value(0)
time.sleep(0.5)

51

www.keyestudio.com

led_red.value(1) # the red LED light up for 5s
time.sleep(5)
led_red.value(0)

Code Explanation

Create pins, set pins mode and delayed functions.

We use the for loop

The simplest form is for i in range()，

In the code, we used range(3)，which means the variable i starts from 0，

increase 1 for each time

Test Result

Upload the code, the green LED will be on for 5s then off, the yellow LED

will flash for 3s then go off and the red one will be on 5s then off.

52

www.keyestudio.com

Project 3: Button Sensor

Overview

In this kit, there is a Keyestudio single-channel button module, which

mainly uses a tact switch and comes with a yellow button cap.

In previous lessons, we learned how to make the pins of our single-chip

microcomputer output a high level or low level. In this experiment, we will

read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading

the high and low level of the S terminal on the sensor.

Working Principle

The button module has four pins. The pin 1 is connected to the pin 3 and

the pin 2 is linked with the pin 4. When the button is not pressed, they are

53

www.keyestudio.com

disconnected. Yet, when the button is pressed, they are connected. If the

button is released, the signal end is high level.

54

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Button

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code:

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 3

* button

55

www.keyestudio.com

* http://www.keyestudio.com

'''

from machine import Pin

import time

button = Pin(15, Pin.IN, Pin.PULL_UP)

while True:

if button.value() == 0:

print("You pressed the button!") #press to print the

information

else:

print("You loosen the button!")

time.sleep(0.1) #delay in 0.1s

Code Explanation

button = Pin(15, Pin.IN, Pin.PULL_UP), we define the pin of the button as

GP15 and set to PULL-UP mode

We can use button = Pin(15, Pin.IN) to set INPUT mode，at this time, the

pins are in high resistance state.

56

www.keyestudio.com

1. button.value()， read levels of buttons. Function returns High or Low

2. if..else.. sentence, when the logic judge is TRUE, the code under the if

will be activated; otherwise, the code udder the else will be activated.

3. When pico detects the button pressed, the signal end is low level (GP 15

is low level). button.value() is 0. If pico detects the button unpressed,

button.value() is 1 and else sentence will be activated.

Test Result

Upload the code, and look at the Shell page. When the button is pressed,

“You pressed the button!”will be displayed; if released,“You loosen the

button!”will appear, as shown below;

57

www.keyestudio.com

58

www.keyestudio.com

Project 4: Obstacle Avoidance Sensor

Overview

In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly

uses an infrared emitting and a receiving tube. In the experiment, we will

determine whether there is an obstacle by reading the high and low level

of the S terminal on the sensor.

Working Principle

NE555 circuit provides IR signals with frequency to the emitter TX, then the

IR signals will fade with the increase of transmission distance. If

encountering the obstacle, it will be reflected back.

59

www.keyestudio.com

When the receiver RX meets the weak signals reflected back, the receiving

pin will output high levels, which indicates the obstacle is far away. On the

contrary, it the reflected signals are stronger, low levels will be output,

which represents the obstacle is close. There are two potentiometers on

the module, and one is for adjusting emission power, another one is for

receiving frequency.

60

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Obstacle

Avoidance

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 4

61

www.keyestudio.com

* Infrared obstacle avoidance sensor

* http://www.keyestudio.com

'''

from machine import Pin

import time

sensor = Pin(16, Pin.IN)

while True:

if sensor.value() == 0:

print("There are obstacles")

else:

print("All going well")

time.sleep(0.1)

Note:

Upload the test code and wire up according to the connection diagram.

After powering on, we start to adjust the two potentiometers to sense

distance.

1. Adjust the potentiometer transmitting power. Make the P LED at the

critical point of ON and OFF states.

62

www.keyestudio.com

2. Adjust the potentiometer receiving frequency. Rotate it clockwise, the

frequency will increase. Make the S LED at the critical point of ON and OFF

states, then the 38KHz square wave can be produced.

Test Result

Upload the code, when the sensor detects the obstacle, the Shell page will

show“There are obstacles”; if the obstacle is not detected,“All going well”

will be shown.

63

www.keyestudio.com

Project 5: Tilt Module

Overview

In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals

of different levels according to whether the module is tilted. There is a ball

inside. When the switch is higher than the horizontal level, the switch is

64

www.keyestudio.com

turned on, and when it is lower than the horizontal level, the switch is

turned off. This tilt module can be used for tilt detection, alarm or other

detection.

Working Principle

The working principle is pretty simple. When pin 1 and 2 of the ball switch

P1 are connected, the signal S is low level and the red LED will light up;

when they are disconnected, the pin will be pulled up by the 4.7K R1 and

make S a high level, then LED will be off.

Components

65

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Tilt

Sensor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 5

* Tilt switch

* http://www.keyestudio.com

'''

66

www.keyestudio.com

from machine import Pin

import time

TiltSensor = Pin(17, Pin.IN)

while True:

value = TiltSensor.value()

print(value, end = " ")

if value== 0:

print("The switch is turned on")

else:

print("The switch is turned off")

time.sleep(0.1)

Code Explanation

Code explanation is as same as the project 3.

Test Result

Upload the code successfully, and observe the Shell.

Make the tilt module incline to one side, the red LED on the module will be

off and the Shell page will display“1 The switch is turned off”; by contrast,

67

www.keyestudio.com

if you make it incline the other side, the red LED will light up and“0 The

switch is turned on”will be shown.

68

www.keyestudio.com

Project 6: Reed Switch Module

Overview

In this kit, there is a Keyestudio reed switch module, which mainly uses a

MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive

electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near

the module by reading the high and low level of the S terminal on the

module; and, we display the test result in the shell.

69

www.keyestudio.com

Working Principle

Reed switch is an abbreviation of the dry reed contacts a passive

electronic switching elements, and has the advantages of simple structure,

small size and ease of control, its shell is a sealed glass tube, the tubes are

installed two iron elastic reed plate, but also filling called rhodium

metal inert gas. In peacetime, the glass tube in the two reeds made of

special materials are separated. When a magnetic substance close to the

glass tube, in the role of the magnetic field lines, the pipe within the

two reeds are magnetized to attract each other in contact, the reed will

suck together, so that the junction point of the connected circuit

communication. After the disappearance of the outer magnetic reed

70

www.keyestudio.com

because of their flexibility and separate, the line is disconnected. Therefore,

as a use of the magnetic field signals to control the line switching device,

reed tube can be used as a sensor for counting the number, spacing, etc.,

and also are widely used in a variety of communication devices

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Reed

Switch

Module*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

71

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 6

* Reed Switch

* http://www.keyestudio.com

'''

from machine import Pin

import time

ReedSensor = Pin(18, Pin.IN)

while True:

value = ReedSensor.value()

print(value, end = " ")

72

www.keyestudio.com

if value == 0:

print("A magnetic field")

else:

print("There is no magnetic field")

time.sleep(0.1)

Test Result

Upload the code. When the sensor detects a magnetic field, val is 0 and the

red LED of the module lights up, "0 A magnetic field" will be displayed;

when no magnetic field is detected, val is 1, and the LED on the module

goes out, "1 There is no magnetic field" will be shown, as shown below.

73

www.keyestudio.com

Project 7: PIR Motion Sensor

Overview

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an

RE200B-P sensor elements. It is a human body pyroelectric motion sensor

based on pyroelectric effect, which can detect infrared rays emitted by

humans or animals, and the Fresnel lens can make the sensor's detection

range farther and wider.

In the experiment, we determine if there is someone moving nearby by

74

www.keyestudio.com

reading the high and low levels of the S terminal on the module. The

detected results will be displayed on the Shell.

Working Principle

The upper left part is voltage conversion(VCC to 3.3V). The working voltage

of sensors we use is 3.3V, therefore we can’t use 5V directly. The voltage

conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of

the sensor outputs low level. At this time, the LED on the module will light

up and the MOS tube Q1 will be connected and the signal terminal S will

detect Low levels.

When one is detected or an infrared signal is received, and pin 1 of the

sensor outputs a high level. Then LED on the module will go off, the MOS

tube Q1 is disconnected and the signal terminal S will detect high levels.

75

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

PIR

Motion

Sensor*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

76

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 7

* PIR motion

* http://www.keyestudio.com

'''

from machine import Pin

import time

PIR = Pin(19, Pin.IN)

while True:

value = PIR.value()

print(value, end = " ")

77

www.keyestudio.com

if value == 1:

print("Some body is in this area!")

else:

print("No one!")

time.sleep(0.1)

Test Result

Upload the code, when the sensor detects someone nearby, value is 1, the

LED will go off and the Shell page will show“1 Somebody is in this area!”.

In contrast, the value is 0, the LED will go up and“0 No one!”will be shown.

78

www.keyestudio.com

Project 8: Active Buzzer

Overview

In this kit, it contains an active buzzer module and a power amplifier

module (the principle is equivalent to a passive buzzer). In this experiment,

we control the active buzzer to emit sounds. Since it has its own oscillating

circuit, the buzzer will automatically sound if given large voltage.

Working Principle

79

www.keyestudio.com

From the schematic diagram, the pin of buzzer is connected to a resistor

R2 and another port is linked with a NPN triode Q1. So, if this triode Q1 is

powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high

level, the triode Q1 will be connected.If the base electrode is pulled down

by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will

emit sounds; if outputting low levels, the buzzer won’t emit sounds.

Components

80

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Active

Buzzer*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 8

* Active buzzer

* http://www.keyestudio.com

'''

from machine import Pin

import time

81

www.keyestudio.com

buzzer = Pin(20, Pin.OUT)

while True:

buzzer.value(1)

time.sleep(1)

buzzer.value(0)

time.sleep(1)

Code Explanation

In the experiment, the pin is set to 20. When setting HIGH, the active

buzzer on the module will emit sounds; when setting LOW, the buzzer

won’t chime.

Test Result

Upload the code and power on. The buzzer chimes

82

www.keyestudio.com

Project 9: 8002b Audio Power Amplifier

Overview

In this kit, there is a Keyestudio 8002b audio power amplifier. The main

components of this module are an adjustable potentiometer, a speaker,

and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal,

83

www.keyestudio.com

with a magnification of 8.5 times, and play sound or music through the

built-in low-power speaker, as an external amplifying device for some

music playing equipment.

In the experiment, we used the 8002b power amplifier speaker module to

emit sounds of various frequencies.

Working Principle

In fact, it is similar to a passive buzzer. The active buzzer has its own

oscillation source.Yet, the passive buzzer does not have internal oscillation.

When controlling the circuit, we need to input square waves of different

frequencies to the positive pole of the component and ground the

negative pole to control the buzzer to chime sounds of different

frequencies.

84

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

8002b

Audio

Power

Amplifier*1

Dupont

Wire3P*1

Micro

USB

Cable*1

Wiring Diagram

85

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 9

* Passive buzzer

* http://www.keyestudio.com

'''

from machine import Pin, PWM

from time import sleep

buzzer = PWM(Pin(21))

buzzer.duty_u16(1000)

buzzer.freq(523)#DO

sleep(0.5)

buzzer.freq(586)#RE

sleep(0.5)

buzzer.freq(658)#MI

sleep(0.5)

buzzer.freq(697)#FA

sleep(0.5)

buzzer.freq(783)#SO

86

www.keyestudio.com

sleep(0.5)

buzzer.freq(879)#LA

sleep(0.5)

buzzer.freq(987)#SI

sleep(0.5)

buzzer.duty_u16(0)

Code Explanation

We use PWM of the machine，

buzzer = PWM(Pin(21)) is a PWM example and the pin of the buzzer is

connected to GP21

buzzer.duty_u16(1000) is used t o set duty cycle(1000/65535) and the

larger this value, the louder the buzzer. When you set to 0, the buzzer

doesn’t emit sounds.

buzzer.freq() is frequency setting.

Firstly, we set duty cycle to 1000/65535, and frequency of DO, RE, MI, FA,

SO, LA and SI and emit DO,RE,MI,FA,SO,LA and SI for 0.5s and turn off the

buzzer.

87

www.keyestudio.com

Test Result

Upload the code and power on. Then the audio power amplifier will emit

DO，Re，Mi，Fa，So，La，Si.

88

www.keyestudio.com

Project 10: RGB Module

Overview

Among these modules is a RGB module. It adopts a F10-full color RGB

foggy common cathode LED. We connect the RGB module to the PWM

port of MCU and the other pin to GND(for common anode RGB, the rest

pin will be connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital

control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

89

www.keyestudio.com

output.In general, the input voltages of ports are 0V and 5V. What if the 3V

is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

For Arduino digital port voltage outputs, there are only LOW and HIGH

levels, which correspond to the voltage outputs of 0V and 5V respectively.

You can define LOW as“0”and HIGH as“1’, and let the Arduino output

five hundred‘0’or“1”within 1 second. If output five hundred‘1’, that

is 5V; if all of which is‘0’,that is 0V; if output 250 01 pattern, that is 2.5V.

This process can be likened to showing a movie. The movie we watch are

not completely continuous. Actually, it generates 25 pictures per second,

which cannot be told by human eyes. Therefore, we mistake it as a

continuous process. PWM works in the same way. To output different

voltages, we need to control the ratio of 0 and 1. The more‘0’or‘1’

output per unit time, the more accurate the control.

90

www.keyestudio.com

Working Principle

For our experiment, we will control the RGB module to display different

colors through three PWM values.

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Common

Cathode

RGB

Module *1

4P

Dupont

Wire*1

Micro

USB

Cable*1

91

www.keyestudio.com

Wiring Diagram

Test Code 1：

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 10.1

* RGB

* http://www.keyestudio.com

'''

from machine import Pin

from time import sleep

red = Pin(9, Pin.OUT)

green = Pin(10, Pin.OUT)

92

www.keyestudio.com

blue = Pin(11, Pin.OUT)

while 1:

red.value(1)

green.value(0)

blue.value(0)

sleep(1)

red.value(0)

green.value(1)

blue.value(0)

sleep(1)

red.value(0)

green.value(0)

blue.value(1)

sleep(1)

Code 2：

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 10.2

* RGB

* http://www.keyestudio.com

93

www.keyestudio.com

'''

from machine import Pin, PWM

from time import sleep

pwm_r = PWM(Pin(9))

pwm_g = PWM(Pin(10))

pwm_b = PWM(Pin(11))

pwm_r.freq(1000)

pwm_g.freq(1000)

pwm_b.freq(1000)

def light(red, green, blue):

pwm_r.duty_u16(red)

pwm_g.duty_u16(green)

pwm_b.duty_u16(blue)

while 1:

light(65535, 0, 0)#red

sleep(1)

light(65535, 25088, 0)#orange

sleep(1)

light(65535, 65535, 0)#yellow

94

www.keyestudio.com

sleep(1)

light(0, 65535, 0)#green

sleep(1)

light(0, 0, 65535)#blue

sleep(1)

light(0, 65535, 65535)#green

sleep(1)

light(41216, 8448, 61696)#purple

sleep(1)

Code Explanation：

Code 1

Red, green and blue represent ports of red, green and blue color.

Connect them to GP9 GP10 GP11 and set to 9, 10 and 11.

The RGB will show red color, green color and blue color with an interval of

one second.

Code 2：

In the code 2, we use PWM output, the frequency we set is

freq(1000)。.duty_u16(). The data stands for the proportion of color red,

95

www.keyestudio.com

green and blue. The larger the data of the duty cycle, the larger the

proportion of the color;

In the experiment, we can adjust the proportion of red, green and blue of

RGB LED by setting corresponding values. Thus, the RGB can display the

corresponding color.

Note: The duty ratio we set above is at most .duty_u16(65535). 65535 is

equal to 256*256-1(0~65535). When we compare the color table below, we

only need to multiply the following value by 256. .

RGB Color Chart

96

www.keyestudio.com

97

www.keyestudio.com

98

www.keyestudio.com

Test Result

Upload the code 1, the RGB on the module will show red, green and blue

color with an interval of 1s.

Upload the code 2, the RGB on the module will show red, orange, yellow,

green, cyan-blue, blue, purple and white color with an interval of 1s.

99

www.keyestudio.com

Project 11: Potentiometer

Overview

The following we will introduce is the Keyestudio rotary potentiometer

which is an analog sensor.

The digital IO ports can read the voltage value between 0 and 3.3V and the

module only outputs high levels. However, the analog sensor can read the

voltage value through ADC analog ports(GP26~GP28) on the pico board.

In the experiment, we will display the test results on the Shell.

100

www.keyestudio.com

Working Principle

It uses a 10K adjustable resistor. We can change the resistance by rotating

the potentiometer. The signal S can detect the voltage changes(0-3.3V)

which are analog quantity

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Rotary

Potentiometer*1

3P Dupont

Wire*1

Micro

USB

Cable*1

101

www.keyestudio.com

Wiring Diagram

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 11

* Rotary potentiometer

* http://www.keyestudio.com

'''

import machine

import utime

potentiometer = machine.ADC(26)

102

www.keyestudio.com

while True:

pot_value = potentiometer.read_u16()

print(pot_value)

utime.sleep(0.1)

1. Code Explanation

In the experiment, we create ADC examples, connect GP26(ADC(26))

2. .read_u16(): this is used to read analog value, the range is 0~65535，

potentiometer.read_u16() means that reading the output analog value

of pin ADC(26)，then name pot_value

3. utime.sleep() delayed function can work as same as the function

time.sleep().

utime.sleep() delayed function is as same as time.sleep()

Test Result

Run the test code and observe the corresponding simulation value

displayed in the Shell below. In the experiment, rotate the potentiometer

clockwise, the analog value increases, and turn the potentiometer

103

www.keyestudio.com

counterclockwise, the analog value decreases, the range is 65535, as

shown in the figure below.

104

www.keyestudio.com

Project 12: Sound Sensor

Overview

In this kit, there is a sound sensor. In the experiment, we test the analog

value corresponding to the sound level in the current environment with it.

The louder the sound, the larger the analog value;

105

www.keyestudio.com

Working Principle

It uses a high-sensitive microphone component and an LM386 chip.

We build the circuit with the LM386 chip and amplify the sound through

the high-sensitive microphone. In addition, we can adjust the sound

volume by the potentiometer. Rotate it clockwise, the sound will get

louder.

106

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Sound

Sensor*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code

'''

107

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 12

* MicroPhone

* http://www.keyestudio.com

'''

import machine

import utime

MicroPhone = machine.ADC(27)

while True:

value = MicroPhone.read_u16()

print(value)

utime.sleep(0.1)

Code Explanation

The setting method is as same as the project 11. We use ADC(27) which

is ADC(1).

108

www.keyestudio.com

Test Result

Upload test code, rotate clockwise the potentiometer and speak at the MIC.

Then you can see the analog value get larger, as shown below

109

www.keyestudio.com

Project 13: Photoresistor

Overview

In this kit, there is a photoresistor which consists of a photosensitive

resistance element. Its resistance changes with the light intensity. Also, it

converts the resistance change into a voltage change.

We interface its signal terminal (S terminal) with the analog port of pico , so

as to sense the change of the analog value, and display the corresponding

analog value in the Shell.

110

www.keyestudio.com

Working Principle

If there is no light, the resistance is 0.2MΩ and the detected voltage at the

terminal 2 is close to 0. When the light intensity increases, the resistance of

photoresistor and detected voltage will diminish.

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Photoresistor*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

111

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 13

* Photoresistance

* http://www.keyestudio.com

'''

import machine

import utime

photoresistance = machine.ADC(28)

while True:

value = photoresistance.read_u16()

print(value)

112

www.keyestudio.com

utime.sleep(0.1)

Code Explanation

The setting method is similar to the project 11. ADC(28) is channel

2(ADC(2)

Test Result

Wire up and upload the test code.

When the light intensity gets stronger, the analog value will get larger, as

shown below;

113

www.keyestudio.com

114

www.keyestudio.com

Project 14: NTC-MF52AT Thermistor

Overview

In the experiment, there is a NTC-MF52AT analog thermistor. We connect

its signal terminal to the analog port of the Raspberry Pi Pico Board and

read the corresponding analog value.

We can use analog values to calculate the temperature of the current

115

www.keyestudio.com

environment through specific formulas. Since the temperature calculation

formula is more complicated, we only read the corresponding analog

value.

Working Principle

This module mainly uses NTC-MF52AT thermistor elements. The

NTC-MF52AT thermistor element can sense the changes of the

surrounding environment temperature. Resistance changes with the

temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to

convert resistance changes into voltage changes.

116

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

NTC-MF52AT

Thermistor*1

3P Dupont

Wire*1

Micro

USB Cable*1

Wiring Diagram

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 14

* Temperature sensor

117

www.keyestudio.com

* http://www.keyestudio.com

'''

import machine

import utime

import math

sensor = machine.ADC(0)

while True:

temp = sensor.read_u16()

print("Temperature ADC: ", end = " ")

print(temp)

utime.sleep(0.1)

Code Explanation

The setting method and experiment 11 are similar.

Test Result

Upload the test code, the more the temperature, the larger the analog

value. As shown in Shell page.

118

www.keyestudio.com

119

www.keyestudio.com

Project 15 Thin-film Pressure Sensor

Overview

In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film

pressure sensor composed of a new type of nano pressure-sensitive

material and a comfortable ultra-thin film substrate, has waterproof and

pressure-sensitive functions.

In the experiment, we determine the pressure by collecting the analog

signal on the S end of the module. The smaller the analog value, the

greater the pressure; and the displayed results will shown on the Shell

120

www.keyestudio.com

Working Principle

When the sensor is pressed by external forces, the resistance value of

sensor will vary. We convert the pressure signals detected by the sensor

into the electric signals through a circuit. Then we can obtain the pressure

changes by detecting voltage signal changes.

121

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Thin-film

Pressure

Sensor*1

3P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code

'''

122

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 15

* Film pressure sensor

* http://www.keyestudio.com

'''

import machine

import utime

film = machine.ADC(1)

while True:

value = film.read_u16()

print(value)

utime.sleep(0.1)

Test Result

Upload code, when the thin-film is pressed by fingers, the analog value will

decrease, as shown below;

123

www.keyestudio.com

124

www.keyestudio.com

Project 16: Joystick Module

Overview

Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X

and Y ports of the module to the analog port of the single-chip

microcomputer, port B to the digital port of the single-chip microcomputer,

VCC to the power output port(3.3-5V), and GND to the GND of the MCU.

We can read the high and low levels of two analog values and one digital

port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on

Shell.

125

www.keyestudio.com

Working Principle

In fact, its working principle is very simple. Its inside structure is equivalent

to two adjustable potentiometers and a button. When this button is not

pressed and the module is pulled down by R1, low levels will be output ; on

the contrary, when the button is pressed, VCC will be connected (high

levels), When we move the joystick, the internal potentiometer will adjust

to output different voltages, and we can read the analog value.

126

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Joystick

Module*1

5P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

127

www.keyestudio.com

* lesson 16

* Joystick

* http://www.keyestudio.com

'''

import machine

import utime

B = machine.Pin(22, machine.Pin.IN)

X = machine.ADC(26)

Y = machine.ADC(27)

while True:

B_value = B.value()

X_value = X.read_u16()

Y_value = Y.read_u16()

print("button:", end = " ")

print(B_value, end = " ")

print("X:", end = " ")

print(X_value, end = " ")

print("Y:", end = " ")

print(Y_value)

utime.sleep(0.1)

128

www.keyestudio.com

Code Explanation

In the experiment, X is set to ADC(26), Y is set to ADC(27) and the pin of

the button is set to GP22(input mode). When displaying data, we can add

end = " " behind the function print() so as to not enter a new line while

printing data.

Test Result

Upload the test code, move the joystick, then the value of x axis and y axis

will change; press the thumb button, the value is 1; in contrast, the value is

0 as shown below;

129

www.keyestudio.com

Project 17: SK6812 RGB Module

Overview

In previous lessons, we learned about the plug-in RGB module and used

PWM signals to color the three pins of the module.

There is a Keyestudio 6812 RGB module whose the driving principle is

different from the plug-in RGB module. It can only control with one pin.

This is a set. It is an intelligent externally controlled LED light source with

the control circuit and the light-emitting circuit. Each LED element is the

130

www.keyestudio.com

same as a 5050 LED lamp bead, and each component is a pixel. There are

four lamp beads on the module, which indicates four pixels

In the experiment, we make different lights show different colors.

Working Principle

From the schematic diagram, we can see that these four pixel lighting

beads are all connected in series. In fact, no matter how many they are, we

can use a pin to control a light and let it display any color. The pixel point

contains a data latch signal shaping amplifier drive circuit, a high-precision

internal oscillator and a 12V high-voltage programmable constant current

control part, which effectively ensures the color of the pixel point light is

highly consistent.

The data protocol adopts a single-wire zero-code communication method.

After the pixel is powered up and reset, the S terminal receives the data

transmitted from the controller. The first 24bit data sent is extracted by the

first pixel and sent to the data latch of the pixel.

131

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

6812 RGB

Module*1

3P Dupont

Wire*1

Micro

USB Cable*1

Wiring Diagram

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 17

132

www.keyestudio.com

* 6812 RGB LED

* http://www.keyestudio.com

'''

import array, time

from machine import Pin

import rp2

Configure the number of sk6812 LEDs, pins and brightness.

NUM_LEDS = 4

PIN_NUM = 16

brightness = 0.1

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW,

out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)

def sk6812():

T1 = 2

T2 = 5

T3 = 3

wrap_target()

label("bitloop")

out(x, 1) .side(0) [T3 - 1]

133

www.keyestudio.com

jmp(not_x, "do_zero") .side(1) [T1 - 1]

jmp("bitloop") .side(1) [T2 - 1]

label("do_zero")

nop() .side(0) [T2 - 1]

wrap()

Create the StateMachine with the sk6812 program, outputting on

Pin(16).

sm = rp2.StateMachine(0, sk6812, freq=8_000_000,

sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.

ar = array.array("I", [0 for _ in range(NUM_LEDS)])

def pixels_show():

dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])

for i,c in enumerate(ar):

r = int(((c >> 8) & 0xFF) * brightness)

134

www.keyestudio.com

g = int(((c >> 16) & 0xFF) * brightness)

b = int((c & 0xFF) * brightness)

dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)

time.sleep_ms(10)

def pixels_set(i, color):

ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def pixels_fill(color):

for i in range(len(ar)):

pixels_set(i, color)

RED = (255, 0, 0)

GREEN = (0, 255, 0)

BLUE = (0, 0, 255)

WHITE = (255, 255, 255)

BLACK = (0, 0, 0)

pixels_set(0, RED)

pixels_set(1, GREEN)

pixels_set(2, BLUE)

135

www.keyestudio.com

pixels_set(3, WHITE)

pixels_show()

time.sleep(5)

'''

for i in range(len(ar)):

pixels_set(i, BLACK)

pixels_show()

'''

Code Explanation

NUM_LEDS = 4，there are four light beads, therefore, we set to 4

PIN_NUM = 16 ， this is the pin number, we connect to GP16, can be

changeable

brightness = 0.1，this is the brightness setting, number 1 is the brightest

pixels_show()，this function is used to refresh and display

pixels_set(i, color)，this function is sued to set up the location of 6812RGB

pixels_fill(color)，display colors of all light beads

Test Result

Upload the code, wire up according to connection diagrams and power on.

Then we can see the light beads on the module show red, green, blue and

136

www.keyestudio.com

white color, as shown below;

137

www.keyestudio.com

Project 18: Rotary Encoder

Overview

In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder.

It is applied to automotive electronics, multimedia audio, instrumentation,

household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary

encoder clockwise, the set data falls by 1; if you rotate it anticlockwise, the

set data is up 1; and when the middle button is pressed, the value will be

138

www.keyestudio.com

show on Shell.

Working Principle

The incremental encoder converts the displacement into a periodic electri

c signal, and then converts this signal into a counting pulse, and the num

ber of pulses indicates the size of the displacement.This module mainly us

es 20-pulse rotary encoder components. It can calculate the number of pu

lses output during clockwise and reverse rotation. There is no limit to cou

nt rotation. It resets to the initial state, that is, starts counting from 0.

139

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

Rotary

Encoder*1

5P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code

'''

140

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 18

* Encoder

* http://www.keyestudio.com

'''

import time

from rotary_irq_rp2 import RotaryIRQ

from machine import Pin

SW=Pin(20,Pin.IN,Pin.PULL_UP)

r = RotaryIRQ(pin_num_clk=18,

pin_num_dt=19,

min_val=0,

reverse=False,

range_mode=RotaryIRQ.RANGE_UNBOUNDED)

val_old = r.value()

while True:

try:

val_new = r.value()

if SW.value()==0 and n==0:

print("Button Pressed")

print("Selected Number is : ",val_new)

n=1

141

www.keyestudio.com

while SW.value()==0:

continue

n=0

if val_old != val_new:

val_old = val_new

print('result =', val_new)

time.sleep_ms(50)

except KeyboardInterrupt:

break

Code Explanation

1. In the experiment, we need to add the encoder module to pico first,

then import the module.You just need to save the .py file on the pico.

2. Add the encoder module and click file as follows;

The above picture shows that we saved them in the pico successfully. Then

142

www.keyestudio.com

we can use from rotary_irq_rp2 import RotaryIRQ

Next, we can see the pin port, SW=Pin(20,Pin.IN,Pin.PULL_UP) means

the pin of SW is connected to GP20, pin_num_clk=18 shows that CLK is

connected to GP18. pin_num_dt=19 indicates that DT is linked with

GP19. These pins can be changed.

1. try/except is used to process the abnormal language of Python, try is

the executable code. Press Ctrl+C to exit program.

2. r.value() value returning to the encoder: the value returning the

encoder

Test Result

Upload the code, rotate the knob on the rotary encoder clockwise, the

displayed data will decrease; in contrast, rotate the knob anticlockwise, the

data will rise. Equally, press the button on the rotary encoder, the value is

shown.

143

www.keyestudio.com

144

www.keyestudio.com

Project 19: Servo Control

Overview

Servo motor is a position control rotary actuator. It mainly consists of a

housing, a circuit board, a core-less motor, a gear and a position sensor. Its

working principle is that the servo receives the signal sent by MCU or

receiver and produces a reference signal with a period of 20ms and width

of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

In general, servo has three lines in brown, red and orange. The brown wire

is grounded, the red one is a positive pole line and the orange one is a

signal line.

145

www.keyestudio.com

Working Principle

When the motor speed is constant, the potentiometer is driven to rotate

through the cascade reduction gear, which leads that the voltage

difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle

of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM

signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

146

www.keyestudio.com

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1
Servo*1

Micro

USB Cable*1

147

www.keyestudio.com

Wiring Diagram

Test Code//Code 1：

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 19.1

* Servo test 1

* http://www.keyestudio.com

'''

from machine import Pin, PWM

import time

pwm = PWM(Pin(0))

pwm.freq(50)

'''

148

www.keyestudio.com

Angles correspond to duty cycle

0°----2.5%----1638

45°----5%----3276

90°----7.5%----4915

135°----10%----6553

180°----12.5%----8192

'''

angle_0 = 1638

angle_90 = 4915

angle_180 = 8192

while True:

pwm.duty_u16(angle_0)

time.sleep(1)

pwm.duty_u16(angle_90)

time.sleep(1)

pwm.duty_u16(angle_180)

time.sleep(1)

Code 2：

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

149

www.keyestudio.com

* lesson 19.2

* Servo test 2

* http://www.keyestudio.com

'''

from utime import sleep

from machine import Pin

from machine import PWM

pwm = PWM(Pin(0))#Pins of servo is connected to GP0

pwm.freq(50)#the cycle of 20ms，frequency is 50Hz

'''

Angles correspond to duty cycle

0°----2.5%----1638

45°----5%----3276

90°----7.5%----4915

135°----10%----6553

180°----12.5%----8192

considering the error，set the duty cycle in the range of 1000~9000 to

rotate 0~180°

'''

set the rotation angles of servo

def setServoCycle (position):

150

www.keyestudio.com

pwm.duty_u16(position)

sleep(0.01)

Convert the angle of rotation to duty cycle

def convert(x, i_m, i_M, o_m, o_M):

return max(min(o_M, (x - i_m) * (o_M - o_m) // (i_M - i_m) + o_m),

o_m)

while True:

for degree in range(0, 180, 1):#rotate from 0° to 180°

pos = convert(degree, 0, 180, 1000, 9000)

setServoCycle(pos)

for degree in range(180, 0, -1):#rotate from 180° to 0°

pos = convert(degree, 0, 180, 1000, 9000)

setServoCycle(pos)

Code explanation for code 1：

Convert to duty cycle according to the angle of the signal pulse width, the

formula is: 2.5+angle/180*10, taking the pin resolution of PWM of Pico as

151

www.keyestudio.com

an example, 2^16 = 65535, when converted to 0 degree, the duty cycle

value is 65535 * 2.5% = 1638.375, when the angle is 180 degrees, its duty

cycle value is 65535 * 12.5% = 8191.875, these two values will be related to

the program, considering the error and rotation angle, I will set the duty

cycle at 1000 and 9000 to make servo rotate by 0~180 degrees.

Code explanation for code 2：

1. convert(x, i_m, i_M, o_m, o_M)：X is the value we will map.

i_m, i_M is the lower limit and upper limit of the current value ；o_m, o_M is

the lower limit and upper limit of the object range.

For instance, convert(degree, 0, 180, 1000, 9000)

Rotation angle degree is in the range of 0° and 180°. The duty cycle we will

map is in the range of 1000 and 9000

Test Result 1：

Upload the code，the servo will rotate 0°，90° and 180°.

Test Result 2:

Upload the code, the servo will rotate from 0° to 180° and move 1° for

each 10ms.

152

www.keyestudio.com

Project 20: Ultrasonic Sensor

Overview

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect

obstacles in front and the detailed distance between the sensor and the

obstacle. Its principle is the same as that of bat flying. It can emit the

ultrasonic signals that cannot be heard by humans. When these signals hit

an obstacle and come back immediately. The distance between the sensor

and the obstacle can be calculated by the time gap of emitting signals and

receiving signals.

In the experiment, we use the sensor to detect the distance between the

153

www.keyestudio.com

sensor and the obstacle, and print the test result.

Ultrasonic detector module can provide 2cm-450cm non-contact sensing

distance, and its ranging accuracy is up to 3mm, very good to meet the

normal requirements. The module includes an ultrasonic transmitter and

receiver as well as the corresponding control circuit.

Working Principle

The most common ultrasonic ranging method is the echo detection. As

shown below; when the ultrasonic emitter emits the ultrasonic waves

towards certain direction, the counter will count. The ultrasonic waves

travel and reflect back once encountering the obstacle. Then the counter

will stop counting when the receiver receives the ultrasonic waves coming

back.

The ultrasonic wave is also sound wave, and its speed of sound V is related

to temperature. Generally, it travels 340m/s in the air. According to time t,

we can calculate the distance s from the emitting spot to the obstacle.

s=340t/2.

The HC-SR04 ultrasonic ranging module can provide a non-contact

distance sensing function of 2cm-400cm, and the ranging accuracy can

154

www.keyestudio.com

reach as high as 3mm; the module includes an ultrasonic transmitter,

receiver and control circuit. Basic working principle:

1. First pull down the TRIG, and then trigger it with at least 10us high level

signal;

2. After triggering, the module will automatically transmit eight 40KHZ

square waves, and automatically detect whether there is a signal to return.

3. If there is a signal returned back, through the ECHO to output a high

level, the duration time of high level is actually the time from emission to

reception of ultrasonic.

Test distance = high level duration * 340m/s * 0.5.

Components

155

www.keyestudio.com

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

keyestudio

SR01

Ultrasonic

Sensor*1

4P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

Test Code'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 20

* Ultrasonic

* http://www.keyestudio.com

'''

from machine import Pin

156

www.keyestudio.com

import utime

ultrasonic ranging，unit：cm

def getDistance(trigger, echo):

produce the square wave of 10us

trigger.low() #give a short low level and ensure a high pulse:

utime.sleep_us(2)

trigger.high()

utime.sleep_us(10)#pull up the high levels, wait for 10ms and set to

low level

trigger.low()

while echo.value() == 0: #build a while loop to detect if the pin is 0,

record the current time

start = utime.ticks_us()

while echo.value() == 1: #build a while loop to detect if the pin is 1，

record the current time

end = utime.ticks_us()

d = (end - start) * 0.0343 / 2 # travelling time x speed of

sound(343.2 m/s，0.0343 for each ms)，the total distance is divided by

1

return d

157

www.keyestudio.com

set pins

trigger = Pin(14, Pin.OUT)

echo = Pin(13, Pin.IN)

main program

while True:

distance = getDistance(trigger, echo)

print("The distance is ：{:.2f} cm".format(distance))

utime.sleep(0.1)

Test Result

Upload the code. The distance between the ultrasonic sensor and the

obstacle is shown on Shell, as shown below;

The maximum detection distance of the HC-SR04 ultrasonic sensor is 3-4m,

the minimum detection distance is 2cm.

158

www.keyestudio.com

159

www.keyestudio.com

Project 21: IR Receiver Module

Overview

There is no doubt that infrared remote control is ubiquitous in daily life. It

is used to control various household appliances, such as TVs, stereos, video

recorders and satellite signal receivers. Infrared remote control is

composed of infrared transmitting and infrared receiving systems, that is,

an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.​

In this experiment, we need to know how to use the infrared receiving

sensor. The infrared receiving sensor mainly uses the VS1838B infrared

160

www.keyestudio.com

receiving sensor element. It integrates receiving, amplifying, and

demodulating. The internal IC has already completed the demodulation,

and the output is a digital signal. It can receive 38KHz modulated remote

control signal. In the experiment, we use the IR receiver to receive the

infrared signal emitted by the external infrared transmitting device, and

display the received signal in the shell.

Working Principle

The main part of the IR remote control system is modulation, transmission

and reception. The modulated carrier frequency is generally between

30khz and 60khz, and most of them use a square wave of 38kHz and a duty

ratio of 1/3. A 4.7K pull-up resistor R3 is added to the signal end of the

infrared receiver.

161

www.keyestudio.com

Components

Raspberr

y Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestu

dio DIY

IR

Receiver

*1

3P

Dupont

Wire*1

Micro

USB

Cable*1

Remote

Control*

1

162

www.keyestudio.com

Wiring Diagram

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 21

* IR Receiver

* http://www.keyestudio.com

'''

import utime

from machine import Pin

ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

163

www.keyestudio.com

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":

"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":

"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":

"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":

"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":

"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":

"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":

"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":

"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):

wait = 1

complete = 0

seq0 = []

seq1 = []

164

www.keyestudio.com

while wait == 1:

if ird.value() == 0:

wait = 0

while wait == 0 and complete == 0:

start = utime.ticks_us()

while ird.value() == 0:

ms1 = utime.ticks_us()

diff = utime.ticks_diff(ms1,start)

seq0.append(diff)

while ird.value() == 1 and complete == 0:

ms2 = utime.ticks_us()

diff = utime.ticks_diff(ms2,ms1)

if diff > 10000:

complete = 1

seq1.append(diff)

code = ""

for val in seq1:

if val < 2000:

if val < 700:

code += "L"

165

www.keyestudio.com

else:

code += "H"

print(code)

command = ""

for k,v in act.items():

if code == v:

command = k

if command == "":

command = code

return command

while True:

command = read_ircode(ird)

print(command)

utime.sleep(0.5)

Code Explanation

read_ircode(ird) corresponds to the key symbols

166

www.keyestudio.com

Test Result

Get an IR remote control and pull out the insolation chip. Point at the IR

receiver and press keys on the IR remote control. Then the LED on the IR

receiver will flash, as shown below;

167

www.keyestudio.com

Project 22: DS1307 Clock Module

Overview

The DS1307 serial real-time clock (RTC) is a low-power, full

binary-coded decimal (BCD) clock/calendar plus 56 bytes of NV SRAM.

Address and data are transferred serially through an I2C, bidirectional

bus.

168

www.keyestudio.com

The clock/calendar provides seconds, minutes, hours, day, date, month,

and year information. The end of the month date is automatically

adjusted for months with fewer than 31 days, including corrections for leap

year. The clock operates in either the 24-hour or 12-hour format with

AM/PM indicator. The DS1307 has a built-in power-sense circuit that

detects power failures and automatically switches to the backup supply.

Timekeeping operation continues while the part operates from the backup

supply.

Working Principle

169

www.keyestudio.com

Detailed address and data:

Serial real-time clock records year, month, day, hour, minute, second and

week; AM and PM indicate morning and afternoon respectively; 56 bytes of

NVRAM store data; 2-wire serial port; programmable square wave output;

power failure detection and automatic switching circuit; battery current is

less than 500nA.

Pins description：X1, 32.768kHz crystal terminal ;

VBAT:X2：+3V input;

SDA：serial data;

SCL：serial clock;

SQW/OUT：square waves/output drivers

170

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

DS1307

Clock

Module*1

4P

Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

VUSB is 5V，hence the power we use can be connected to VUSB

171

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 22

* DS1307 Real Time Clock

* http://www.keyestudio.com

'''

from machine import I2C, Pin

from urtc import DS1307

import utime

i2c = I2C(1,scl = Pin(15),sda = Pin(14),freq = 400000)

rtc = DS1307(i2c)

year = int(input("Year : "))

month = int(input("month (Jan --> 1 , Dec --> 12): "))

date = int(input("date : "))

day = int(input("day (1 --> monday , 2 --> Tuesday ... 0 --> Sunday): "))

hour = int(input("hour (24 Hour format): "))

minute = int(input("minute : "))

second = int(input("second : "))

172

www.keyestudio.com

now = (year,month,date,day,hour,minute,second,0)

rtc.datetime(now)

#(year,month,date,day,hour,minute,second,p1) = rtc.datetime()

while True:

DateTimeTuple = rtc.datetime()

print(DateTimeTuple[0], end = '-')

print(DateTimeTuple[1], end = '-')

print(DateTimeTuple[2], end = ' ')

print(DateTimeTuple[4], end = ':')

print(DateTimeTuple[5], end = ':')

print(DateTimeTuple[6], end = ' week:')

print(DateTimeTuple[3])

utime.sleep(1)

Code Explanation

In the experiment, we need to import the urtc module.

173

www.keyestudio.com

rtc.datetime(), when running the program, we set“input

please”program, run the code, we need to input time and date, after

inputting, the data will be displayed each second.

DateTimeTuple[0] save years

DateTimeTuple[1] save months

DateTimeTuple[2] save days

DateTimeTuple[3] Save weeks

Rtc.GetDateTime().Month() return months

DateTimeTuple[4] save hours

DateTimeTuple[5] save minutes

DateTimeTuple[6] save seconds

Test Result

Upload the test code, we can see the displayed year, month, day, hour,

minute, second and week on the shell, as shown below;

174

www.keyestudio.com

175

www.keyestudio.com

Project 23: TM1650 4-Digit Tube Display

Overview

This module is mainly composed of a 0.36 inch red common anode 4-digit

digital tube, and its driver chip is TM1650. When using it, we only need two

signal lines to make the single-chip microcomputer control a 4-bitdigit

tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive

control. It integrates MCU input and output control digital interface, data

latch, LED drivers, keyboard scanning, brightness adjustment and other

circuits.

TM1650 has stable performance, reliable quality and strong

176

www.keyestudio.com

anti-interference ability.

It can be applied to the application of long-term continuous working for 24

hours.

TM1650 uses 2-wire serial transmission protocol for communication (note

that this data transmission protocol is not a standard I2C protocol). The

chip can drive the digital tube and save MCU pin resources through two

pins and MCU communication.

Working Principle

TM1650 adopts IIC treaty and SDA and SCL wire

Data command setting is 0x48. This means that lighting up the tube

display not perform its button scanning function.

177

www.keyestudio.com

Data command setting: 0x48 means that we light up the digital tube,

instead of enable the function of key scanning

Command display setting:

bit[6:4]：set the brightness of tube display, and 000 is brightest

bit[3]：set to show decimal points

bit[0]：start the display of the tube display

Components

178

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

TM1650

4-Digit Tube

Display*1

4P Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 23

* TM1650 Four digital tube

* http://www.keyestudio.com

'''

from machine import Pin

import time

179

www.keyestudio.com

definitions for TM1650

ADDR_DIS = 0x48 #mode command

ADDR_KEY = 0x49 #read key value command

definitions for brightness

BRIGHT_DARKEST = 0

BRIGHT_TYPICAL = 2

BRIGHTEST = 7

on = 1

off = 0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]

DIG = [0x68,0x6a,0x6c,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15

dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

180

www.keyestudio.com

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):

global clk,dio

for i in range(8):

if(wr_data & 0x80 == 0x80):

dio.value(1)

else:

dio.value(0)

clk.value(0)

time.sleep(0.0001)

clk.value(1)

time.sleep(0.0001)

clk.value(0)

wr_data <<= 1

return

def start():

global clk,dio

dio.value(1)

181

www.keyestudio.com

clk.value(1)

time.sleep(0.0001)

dio.value(0)

return

def ack():

global clk,dio

dy = 0

clk.value(0)

time.sleep(0.0001)

dio = Pin(dioPin, machine.Pin.IN)

while(dio.value() == 1):

time.sleep(0.0001)

dy += 1

if(dy>5000):

break

clk.value(1)

time.sleep(0.0001)

clk.value(0)

dio = Pin(dioPin, machine.Pin.OUT)

return

182

www.keyestudio.com

def stop():

global clk,dio

dio.value(0)

clk.value(1)

time.sleep(0.0001)

dio.value(1)

return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):

183

www.keyestudio.com

writeByte(NUM[num] | 0x80)

else:

writeByte(NUM[num])

ack()

stop()

return

def clearBit(bit):

if(bit > 4):

return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()

184

www.keyestudio.com

return

def setBrightness(b = BRIGHT_TYPICAL):

global DisplayCommand,brightness

DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)

return

def setMode(segment = 0):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):

global DisplayCommand

DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):

if(bit > 4):

return

if(OnOff == 1):

185

www.keyestudio.com

DOT[bit-1] = 1;

else:

DOT[bit-1] = 0;

return

def InitDigitalTube():

setBrightness(2)

setMode(0)

displayOnOFF(1)

for _ in range(4):

clearBit(_)

return

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):

clearBit(2)

clearBit(3)

clearBit(4)

if(num > 9 and num < 100):

displayBit(2,num//10%10)

clearBit(3)

186

www.keyestudio.com

clearBit(4)

if(num > 99 and num < 1000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

clearBit(4)

if(num > 999 and num < 10000):

displayBit(2,num//10%10)

displayBit(3,num//100%10)

displayBit(4,num//1000)

InitDigitalTube()

while True:

#displayDot(1,on) # on or off, DigitalTube.Display(bit,number);

bit=1---4 number=0---9

for i in range(0,999):

ShowNum(i)

time.sleep(0.01)

Code ExplanationclkPin = 15、dioPin = 14

Set pins, that is, CLK is connected to GP15, DIO is linked with GOP14 and

187

www.keyestudio.com

we can set any pins.

displayBit(bit, num): show bit(1~4) and display number 显 示 数 字

num(0~9)

clearBit(bit) clear up bit(1~4) display

setBrightness(): brightness setting

displayOnOFF() 0 means OFF, 1 stands for ON

displayDot(bit, OnOff): show bit，0 is OFF and 1 is ON.

ShowNum(num): show integer num，in the range of 0~9999

Test Result

Run the test code, wire up and power on. 4-digit tube display will show

numbers from 0 to 99999 then from 9999 to 0

188

www.keyestudio.com

Project 24: HT16K33_8X8 Dot Matrix Module

189

www.keyestudio.com

Overview

What is the dot matrix display?

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each

light-emitting diode is placed at the intersection of the row line and the

column line. When the corresponding row is set to 1 level, and a certain

column is set to 0 level, the corresponding diode will light up.

Working Principle

As the schematic diagram shown, to light up the LED at the first row and column,

we only need to set C1 to high level and R1 to low level. To turn on LEDs at the

first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot

matrix, which greatly saves the resources of the single-chip microcomputer.

There are three DIP switches on the module, all of which are set to I2C

communication address. The setting method is shown below.

A0，A1and A2 are grounded, that is, the address is 0x70

A

0（1）

A

1（2）

A

2（3）

A

0（1）

A

1（2）

A

2（3）

A

0（1）

A

1（2）

A

2（3）

0 0 0 1 0 0 0 1 0

190

www.keyestudio.com

（OF

F）

（ OF

F）

（OF

F）

（ O

N）

（ OF

F）

（OF

F）

（OF

F）

（ O

N）

（ OF

F）

OX70 OX71 OX72

A

0（1）

A

1（2）

A

2（3）

A

0（1）

A

1（2）

A

2（3）

A

0（1）

A

1（2）

A

2（3）

1

（ O

N）

1

（ O

N）

0

（OF

F）

0

（OF

F）

0

（ OF

F）

1

（ O

N）

1

（ O

N）

0

（ OF

F）

1

（ O

N）

OX73 OX74 OX75

A

0（1）

A

1（2）

A

2（3）

A

0（1）

A

1（2）

A

2（3）

0

（OF

F）

1

（ O

N）

1

（ O

N）

1

（ O

N）

1

（ O

N）

1

（ O

N）

OX76 OX77

191

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

HT16K33_

8X8 Dot

Matrix*1

4P

Dupont

Wire*1

Micro

USB

Cable*1

Wiring Diagram

Test Code'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 24

192

www.keyestudio.com

* HT16K33 8*8 dot matrix

* http://www.keyestudio.com

'''

import machine

import time

import json

import matrix_fonts

from ht16k33_matrix import ht16k33_matrix

Tool To Make Sprites https://gurgleapps.com/tools/matrix

#i2c config

clock_pin = 21

data_pin = 20

bus = 0

i2c_addr_left = 0x70

use_i2c = True

def scan_for_devices():

i2c =

machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pi

n))

devices = i2c.scan()

if devices:

193

www.keyestudio.com

for d in devices:

print(hex(d))

else:

print('no i2c devices')

if use_i2c:

scan_for_devices()

left_eye = ht16k33_matrix(data_pin, clock_pin, bus, i2c_addr_left)

def show_char(left):

if use_i2c:

left_eye.show_char(left)

def scroll_message(font,message='hello',delay=0.05):

left_message = ' ' + message

right_message = message + ' '

length=len(right_message)

char_range=range(length-1)

for char_pos in char_range:

right_left_char=font[right_message[char_pos]]

right_right_char=font[right_message[char_pos+1]]

left_left_char=font[left_message[char_pos]]

194

www.keyestudio.com

left_right_char=font[left_message[char_pos+1]]

for shift in range(8):

left_bytes=[0,0,0,0,0,0,0,0]

right_bytes=[0,0,0,0,0,0,0,0]

for col in range(8):

left_bytes[col]=left_bytes[col]|left_left_char[col]<<shift

left_bytes[col]=left_bytes[col]|left_right_char[col]>>8-shift;

right_bytes[col]=right_bytes[col]|right_left_char[col]<<shift

right_bytes[col]=right_bytes[col]|right_right_char[col]>>8-shift;

if use_i2c:

left_eye.show_char(left_bytes)

time.sleep(delay)

while True:

show_char(matrix_fonts.textFont1['A'])

time.sleep(1)

show_char(matrix_fonts.textFont1['B'])

time.sleep(1)

show_char(matrix_fonts.textFont1['C'])

time.sleep(1)

195

www.keyestudio.com

scroll_message(matrix_fonts.textFont1, ' Hello World ')

Code Explanation

Firstly we need to import the dot matrix module. matrix_fonts is the

module file for all kinds of characters.

show_char() is a displayed character, for instance,

show_char(matrix_fonts.textFont1['A']) represents displaying A.

scroll_message(font,message='hello',delay=0.05): scroll to display，0.05

is the speed, massage means displayed character strings, font is a model

file.

Test Result

Wire up and upload the test code. Then the dot matrix display will show

“A”,“B”and“C”then“Hello World”.

196

www.keyestudio.com

5. Comprehensive Experiments

The previous projects are related to single sensor or module. In the

following part, we will combine various sensors and modules to create

some comprehensive experiments to perform special functions.

Project 25: Breathing LED

197

www.keyestudio.com

Overview

A“breathing LED”is a phenomenon where an LED's brightness smoothly

changes from dark to bright and back to dark, continuing to do so and

giving the illusion of an LED“breathing.”This phenomenon is similar to a

lung breathing in and out. So how to control LED’s brightness? We need

to take advantage of PWM.

Components

Raspberry Pi

Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

White LED

Module*1

3P Dupont

Wire*1

Micro USB

Cable*1

Wiring Diagram

198

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 25

* Breath

* http://www.keyestudio.com

'''

import machine

import time

pwm = machine.PWM(machine.Pin(15))

pwm.freq(1000)

duty = 0

199

www.keyestudio.com

direction = 1

while True:

duty += direction

if duty > 255:

duty = 255

direction = -1

elif duty < 0:

duty = 0

direction = 1

pwm.duty_u16(duty * duty)

time.sleep(0.01)

Code Explanation

The bigger the duty cycle is set, the brighter the LED. The maximum is

65535. When duty increases from 0 to 255, up 1 and delay 10ms for each

time, then LED will gradually get bright. When PWM is 255*255, i decreases

from 255 to 0, down by1 and delay 10ms for each time, then the LED will

get dimmer, like human breathe.

Also, we can change the time of getting dimmer or brighter in the code.

Another way is changing step length like direction = -2 or direction = 2.

200

www.keyestudio.com

Test Result

Run the test code, the LED on the module gradually gets dimmer then

brighter, cyclically, like human breathe

201

www.keyestudio.com

Project 26: Button-controlled LED

Overview

In this lesson, we will make an extension experiment with a button and an

LED. When the button is pressed and low levels are output, the LED will

light up; when the button is released, the LED will go off. Then we can

control a module with another module.

202

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestudio

White LED

Module*1

Keyestudio

DIY

Button

Module*1

3P

Dupont

Wire*2

Micro

USB

Cable*1

Wiring Diagram

203

www.keyestudio.com

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 26

* button control LED

* http://www.keyestudio.com

'''

from machine import Pin

import time

button = Pin(16, Pin.IN)

LED = Pin(15, Pin.OUT)

touch = False

def toggle_handle(pin):

global touch

touch = not touch

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

while True:

LED.value(touch)

204

www.keyestudio.com

time.sleep(0.01)

Code Explanation

Configure pins mode according to IO ports connected to sensors and

modules.

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

The trigger means that high levels turn into low levels and the trigger

interrupt then use the interrupt function toggle_handle.

Test Result

Upload the code, when the button is pressed, the LED will light up; when

pressed again, the LED will go off

205

www.keyestudio.com

Project 27: Alarm Experiment

Overview

In the previous experiment, we control an output module though an input

module. In this lesson, we will make an experiment that the active buzzer

will emit sounds once an obstacle appears.

206

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestudio

Obstacle

Avoidance

Sensor*1

Keyestudi

o Active

Buzzer*1

3P

Dupont

Wire*2

Micro

USB

Cable*1

Wiring Diagram

Test Code

'''

207

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 27

* Avoiding alarm

* http://www.keyestudio.com

'''

from machine import Pin

import time

buzzer = Pin(16, Pin.OUT)

sensor = Pin(15, Pin.IN)

while True:

buzzer.value(not(sensor.value()))

time.sleep(0.01)

Code Explanation

When detecting the obstacle, sensor.value() will return a low level signal.

The pin GP16 of the buzzer will output high levels and the buzzer will emit

sounds.

208

www.keyestudio.com

Test Result

Upload the test code, if the obstacle is detected, the external active buzzer

will chime; if not, it won’t beep

209

www.keyestudio.com

Project 28: PIR Motion Sensor

Introduction

In this experiment, we will control an active buzzer and an on-board LED

through a PIR motion sensor.

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudi

o PIR

Motion

Sensor*1

Keyestud

io Active

Buzzer*1

3P Dupont

Wire*2

MicroUSB

Cable*1

210

www.keyestudio.com

Connection Diagram

Test Code

'''

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 28

* PIR motion sensor

* http://www.keyestudio.com

'''

import machine

import utime

sensor_pir = machine.Pin(15, machine.Pin.IN,

machine.Pin.PULL_DOWN)

211

www.keyestudio.com

led = machine.Pin(25, machine.Pin.OUT)

buzzer = machine.Pin(16, machine.Pin.OUT)

def pir_handler(pin):

utime.sleep_ms(100)

if pin.value():

print("Warning! Intrusion detected！")

buzzer.value(1)

for i in range(20):

led.toggle()

utime.sleep_ms(100)

sensor_pir.irq(trigger=machine.Pin.IRQ_RISING, handler=pir_handler)

while True:

led.toggle()

buzzer.value(0)

utime.sleep(2)

Code Explanation

212

www.keyestudio.com

We use sensor_pir.irq(trigger=machine.Pin.IRQ_RISING,

handler=pir_handler) to trigger on a rising edge (when it goes low to

high). pir_handler is an interrupt handler used to control the buzzer and

the LED.

Test Result

After running the program, the LED will blink slowly and the detector starts

to work. IRQ_RISING is used when the interrupt triggers. When the motion

is detected, the level on the PIR output will change from 0 to 1. Then the

pir_handler() function is called, the buzzer generates sounds and the LED

flashes quickly.

213

www.keyestudio.com

Project 29: Speaker Module

214

www.keyestudio.com

Introduction

We learned about controlling the speaker module to make sounds, play

beats and adjust its volume. In fact, each song is a combination of specific

beats and tones (frequencies). In this experiment, we use this speaker

module to play a song.

The frequency of each tone is shown below.

Bass:

Key

Note

1# 2# 3# 4# 5# 6# 7#

A 221 248 278 294 330 371 416

B 248 278 294 330 371 416 467

C 131 147 165 175 196 221 248

D 147 165 175 196 221 248 278

E 165 175 196 221 248 278 312

F 175 196 221 234 262 294 330

215

www.keyestudio.com

G 196 221 234 262 294 330 371

Midrange :

Key

Note

1 2 3 4 5 6 7

A 441 495 556 589 661 724 833

B 495 556 624 661 724 833 935

C 262 294 330 350 393 441 495

D 294 330 350 393 441 495 556

E 330 350 393 441 495 556 624

F 350 393 441 495 556 624 661

G 393 441 495 556 624 661 724

216

www.keyestudio.com

Treble:

Key

Note

1# 2# 3# 4# 5# 6# 7#

A 882 990 1112 1178 1322 1484 1665

B 990 1112 1178 1322 1484 1665 1869

C 525 589 661 700 786 882 990

D 589 661 700 786 882 990 1112

E 661 700 786 882 990 1112 1248

F 700 786 882 935 1049 1178 1322

G 786 882 990 1049 1178 1322 1484

Beats are the time delay for each note. The larger the number, the longer

the delay time. A note without a line in the spectrum is a beat, with a delay

of 1s. while a beat with an underline is 1/2 of a beat without a line, with a

delay of 0.5s, and a beat with two underlines is 1/4 of a beat without a line,

with a delay of 0.25s. The 1/8 of a beat is with a delay of 0.125s.

We will take Happy Birthday Song as an example.

217

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico Shield*1

Keyestudio

Speaker

Module*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Connection Diagram

Test Code
'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 29
* Speaker module

218

www.keyestudio.com

* http://www.keyestudio.com
'''
from machine import Pin, PWM
from utime import sleep
buzzer = PWM(Pin(15))

tones = {
"D1": 262,
"D2": 293,
"D3": 329,
"D4": 349,
"D5": 392,
"D6": 440,
"D7": 494,
"M1": 523,
"M2": 586,
"M3": 658,
"M4": 697,
"M5": 783,
"M6": 879,
"M7": 987,
"H1": 1045,
"H2": 1171,
"H3": 1316,
"H4": 1393,
"H5": 1563,
"H6": 1755,
"H7": 1971
}

song = ["D5","D5","D6","D5","M1","D7",
"D5","D5","D6","D5","M2","M1",
"D5","D5","M5","M3","M1","D7","D6",
"M4","M4","M3","M1","M2","M1"

]

durt = [0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5,
0.25, 0.25, 0.5, 0.5, 0.5, 1

]

def playtone(frequency):
buzzer.duty_u16(1000)

219

www.keyestudio.com

buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

def playsong(mysong):
for i in range(len(mysong)):

playtone(tones[mysong[i]])
sleep(durt[i])

bequiet()
playsong(song)

Code Explanation

We first list all the frequencies in D, then we list the frequencies and the

beats according to the numbered musical notation. We use a beat of

500ms, which can be adjusted by yourself.

Test Result

Connect the components according to the connection diagram and run the

test code, the speaker module will play a song.

220

www.keyestudio.com

Project 30: Rotary Encoder

Introduction

In this lesson, we will control the LED on the RGB module to show different

colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to

get the remainders. The remainder is 0 and the LED will become red. The

remainder is 1, the LED will become green. The remainder is 2, the LED will

turn blue.

Components

221

www.keyestudio.com

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

Common

Cathode RGB

Module*1

Keyestudio

Rotary Encoder

Module*1

5P Dupont

Wire*1
4P Dupont Wire*1

Micro USB

Cable*1

Connection Diagram

Test Code

'''

222

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 30
* Rotary encoder
* http://www.keyestudio.com

'''
import time
from rotary_irq_rp2 import RotaryIRQ
from machine import Pin, PWM

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))
pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_u16(red)
pwm_g.duty_u16(green)
pwm_b.duty_u16(blue)

SW=Pin(20,Pin.IN,Pin.PULL_UP)
r = RotaryIRQ(pin_num_clk=18,

pin_num_dt=19,
min_val=0,
reverse=False,
range_mode=RotaryIRQ.RANGE_UNBOUNDED)

while True:
val = r.value()
print(val%3)
if val%3 == 0:

light(65535, 0, 0)
elif val%3 == 1:

light(0, 65535, 0)
elif val%3 == 2:

light(0, 0, 65535)
time.sleep(0.1)

Code Explanation

223

www.keyestudio.com

Any number divided by 3, the remainder obtained is 0, or 1, or 2, we can

use these three values to determine the status of the LED. Set the pins of

reminders to GP9 (red), GP10 (green) and GP11 (blue), respectively. Refer to

the previous method to control the LED to show the corresponding colors.

Test Result

Wire up the components, run the code and look at the Shell. Turn the

encoder to display the reminders, then the LED will show different colors.

224

www.keyestudio.com

Project 31: Rotary Potentiometer

Introduction

In the previous courses, we did experiments of breathing light and

controlling LED with button. In this course, we do these two experiments

by controlling the brightness of LED through an adjustable potentiometer.

The brightness of LED is controlled by PWM values, and the range of

analog values is the same as the PWM’s, from 0 to 65535.

After the code is set successfully, we can control the brightness of the LED

on the module by rotating the potentiometer.

Components

225

www.keyestudio.com

Raspberr

y Pi Pico

Board*1

Raspberry

Pi Pico

Shield*1

Keyestu

dio

White

LED

Module

*1

Keyestud

io Rotary

Potentio

meter*1

3P

Dupont

Wire*2

MicroUS

B

Cable*1

Connection Diagram

Test Code

'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 31
* Rotary potentiometer
* http://www.keyestudio.com

'''
import machine
import utime

226

www.keyestudio.com

potentiometer = machine.ADC(26)

pwm = machine.PWM(machine.Pin(15))
pwm.freq(1000)

while True:
pot_value = potentiometer.read_u16()
pwm.duty_u16(pot_value)
utime.sleep(0.1)

Code Explanation

It is easier to control the brightness of the LED with a potentiometer. In

MicroPython, the ADC values range from 0 to 65535, just assign values

directly, which is simple and convenient.

Test Result

Run the code, turn the potentiometer to adjust the brightness of the LED.

227

www.keyestudio.com

Project 32: Sound Activated Light

Introduction

In this lesson, we will make a smart sound activated light using a sound

sensor and an LED module. When we make a sound, the light will

automatically turn on; when there is no sound, the lights will automatically

turn off. How it works? Because the sound-controlled light is equipped with

a sound sensor, and this sensor converts the intensity of external sound

into a corresponding value. Then set a threshold, when the threshold is

exceeded, the light will turn on, and when it is not exceeded, the light will

228

www.keyestudio.com

go out.

Components

Raspberr

y Pi Pico

Board*1

Raspberr

y Pi Pico

Shield*1

Keyestudi

o Sound

Sensor*1

Keyestu

dio

White

LED

Module*

1

3P

Dupont

Wire*2

MicroUS

B

Cable*1

Connection Diagram

Test Code

'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

229

www.keyestudio.com

* lesson 32
* sound-controlled lights
* http://www.keyestudio.com

'''
import machine
import time

MicroPhone = machine.ADC(26)

led = machine.Pin(15,machine.Pin.OUT)

while True:
value = MicroPhone.read_u16()
print(value)
if value > 5000:

led.value(1)
time.sleep(3)

else:
led.value(0)

time.sleep(0.1)

Code Explanation

In this experiment, we set the threshold to 5000. If it exceeds 5000, the LED

will light up, otherwise it will be turned off.

Test Result

Run the code, the Shell will display analog values. When we make a sound,

the value will increase. If the value exceeds 5000, the LED will light up.

230

www.keyestudio.com

Project 33: RGB Module

Introduction

We learned how to use the 6812 RGB module, we knew that this module

can light up each LED through a pin. In this experiment, we will control the

RGB module to display different colors. (Note: do not look directly at the

LEDs for a long time to avoid damage to our eyes.)

231

www.keyestudio.com

Components

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio

6812 RGB

Module*1

3P Dupont

Wire*1

MicroUSB

Cable*1

Connection Diagram

Test Code

'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 33
* RGB Module
* http://www.keyestudio.com

'''
Example using PIO to drive a set of WS2812 LEDs.

import array, time
from machine import Pin
import rp2

232

www.keyestudio.com

Configure the number of WS2812 LEDs.
NUM_LEDS = 4
PIN_NUM = 15
brightness = 0.2

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def ws2812():

T1 = 2
T2 = 5
T3 = 3
wrap_target()
label("bitloop")
out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp("bitloop") .side(1) [T2 - 1]
label("do_zero")
nop() .side(0) [T2 - 1]
wrap()

Create the StateMachine with the ws2812 program, outputting on pin
sm = rp2.StateMachine(0, ws2812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [0 for _ in range(NUM_LEDS)])

##
def pixels_show():

dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
for i,c in enumerate(ar):

r = int(((c >> 8) & 0xFF) * brightness)
g = int(((c >> 16) & 0xFF) * brightness)
b = int((c & 0xFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)
time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

233

www.keyestudio.com

def color_chase(color, wait):
for i in range(NUM_LEDS):

pixels_set(i, color)
time.sleep(wait)
pixels_show()

time.sleep(0.2)

def wheel(pos):
Input a value 0 to 255 to get a color value.
The colours are a transition r - g - b - back to r.
if pos < 0 or pos > 255:

return (0, 0, 0)
if pos < 85:

return (255 - pos * 3, pos * 3, 0)
if pos < 170:

pos -= 85
return (0, 255 - pos * 3, pos * 3)

pos -= 170
return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):
for j in range(255):

for i in range(NUM_LEDS):
rc_index = (i * 256 // NUM_LEDS) + j
pixels_set(i, wheel(rc_index & 255))

pixels_show()
time.sleep(wait)

BLACK = (0, 0, 0)
RED = (255, 0, 0)
YELLOW = (255, 150, 0)
GREEN = (0, 255, 0)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
WHITE = (255, 255, 255)
COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE, WHITE)

print("chases")
for color in COLORS:

color_chase(color, 0.05)

print("rainbow")

234

www.keyestudio.com

rainbow_cycle(0)

Code Explanation

color_chase(color, wait): “color ”is used to control the LEDs to display

corresponding color, “ wait ” is used to control the time that the LEDs

change to another color.

rainbow_cycle(0): to control the LEDs to show different colors repeatedly.

Test Result

Wire up the components and run the code. We will see the LEDs shows

different colors.

235

www.keyestudio.com

Project 34: Ultrasonic Sensor

Introduction

We know that bats use echoes to determine the direction and the location

of their preys. In real life, sonar is used to detect sounds in the water. Since

the attenuation rate of electromagnetic waves in water is very high, it

cannot be used to detect signals, however, the attenuation rate of sound

waves in the water is much smaller, so sound waves are most commonly

used underwater for observation and measurement.In this experiment, we

will use a speaker module, an RGB module and a 4-digit tube display to

236

www.keyestudio.com

make a device for detection through ultrasonic.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico Shield*1

keyes brick

HC-SR04

Ultrasonic

Sensor*1

Keyestudio

Speaker

Module*1

Keyestudio

Common

Cathode RGB

Module*1

Keyestudio

TM1650

4-Digit Tube

Display*1

4P Dupont

Wire*3

3P Dupont

Wire*1

MicroUSB

Cable*1

237

www.keyestudio.com

Connection Diagram

Test Code

'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 34
* Ultrasonic Sensor
* http://www.keyestudio.com

'''
from machine import Pin, PWM
import utime

definitions for TM1650
ADDR_DIS = 0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST = 0
BRIGHT_TYPICAL = 2
BRIGHTEST = 7

on = 1
off = 0

238

www.keyestudio.com

number:0~9
NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6c,0x6e]
DIG = [0x6e,0x6c,0x6a,0x68]
DOT = [0,0,0,0]

clkPin = 15
dioPin = 14
clk = machine.Pin(clkPin, machine.Pin.OUT)
dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr_data):
global clk,dio
for i in range(8):

if(wr_data & 0x80 == 0x80):
dio.value(1)

else:
dio.value(0)

clk.value(0)
utime.sleep(0.0001)
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
wr_data <<= 1

return

def start():
global clk,dio
dio.value(1)
clk.value(1)
utime.sleep(0.0001)
dio.value(0)
return

def ack():
global clk,dio
dy = 0
clk.value(0)
utime.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):

239

www.keyestudio.com

utime.sleep(0.0001)
dy += 1
if(dy>5000):

break
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
utime.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):
global ADDR_DIS
if(num > 9 and bit > 4):

return
start()
writeByte(ADDR_DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()
return

def clearBit(bit):
if(bit > 4):

return
start()
writeByte(ADDR_DIS)

240

www.keyestudio.com

ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):

return
if(OnOff == 1):

DOT[bit-1] = 1;
else:

DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _ in range(4):

clearBit(_)
return

241

www.keyestudio.com

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):

clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))
pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_u16(red)
pwm_g.duty_u16(green)
pwm_b.duty_u16(blue)

Ultrasonic sensor detects distances, the unit is cm
def getDistance(trigger, echo):

Produces 10us square wave
trigger.low() #Pull the trigger pin low
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#Pull the trigger pin high for 10us before pulling the trigger pin low
trigger.low()

while echo.value() == 0: #Create a while loop to check whether the value of echo pin is 0 or not, and record
the time

242

www.keyestudio.com

start = utime.ticks_us()
while echo.value() == 1: #Create a while loop to check whether the value of echo pin is 1 or not, and record

the time
end = utime.ticks_us()

d = (end - start) * 0.0343 / 2 #Multiply the journey time (end-start) by the speed of sound (343.2 m/s, which
is 0.0343 cm per microsecond), the product of that equation is divided by two

return d

Configure the pins
trigger = Pin(20, Pin.OUT)
echo = Pin(19, Pin.IN)

buzzer = PWM(Pin(16))

def playtone(frequency):
buzzer.duty_u16(1000)
buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

Main program
InitDigitalTube()
while True:

distance = int(getDistance(trigger, echo))
ShowNum(distance)
if distance <= 10:

playtone(880)
utime.sleep(0.1)
bequiet()
light(65535, 0, 0)

elif distance <= 20:
playtone(532)
utime.sleep(0.2)
bequiet()
light(0, 0, 65535)

else:
light(0, 65535, 0)

Code Explanation

1. Set the frequencies of sound and the color of the LED by changing

243

www.keyestudio.com

distances.

2. To facilitate the control of the distances of the obstacle, we can adjust

the range of distance in the above code according to the actual situation.

Test Result

Connect the components according to the connection diagram and run the

code. When the ultrasonic sensor detects an obstacle at different distances,

the buzzer on the speaker module will produce different frequencies of

sound, the RGB will show different colors, and the measured distances are

displayed on the 4-digit tube display.

244

www.keyestudio.com

Project 35: IR Remote Control

Introduction

In the previous experiments, we learned to turn on or turn off the LED,

adjust the brightness of a light through PWM, and how to use the infrared

receiver module. So in this experiment, we use an infrared remote control

to control an LED module.

When we receive a value, we set the PWM value by the corresponding

button value, thus you can adjust the brightness. Control the LED to turn

245

www.keyestudio.com

on or turn off is in the same way. If we want to use the same button to

control the LED to turn on or turn off, we can achieve it through the code.

Components

Raspberry Pi

Pico Board*1

Raspberry Pi

Pico

Shield*1

Keyestudio

White LED

Module*1

Keyestudio

IR Receiver*1

MicroUSB

Cable*1

Remote

Control*1

3P Dupont

Wire*2

Connection Diagram

246

www.keyestudio.com

Test Code

'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 35
* IR remote control
* http://www.keyestudio.com

'''
import time
from machine import Pin

led = Pin(14, Pin.OUT)
ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":
"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait = 1
complete = 0
seq0 = []

247

www.keyestudio.com

seq1 = []

while wait == 1:
if ird.value() == 0:

wait = 0
while wait == 0 and complete == 0:

start = time.ticks_us()
while ird.value() == 0:

ms1 = time.ticks_us()
diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete == 0:

ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:

complete = 1
seq1.append(diff)

code = ""
for val in seq1:

if val < 2000:
if val < 700:

code += "L"
else:

code += "H"
print(code)
command = ""
for k,v in act.items():

if code == v:
command = k

if command == "":
command = code

return command

flag = False
while True:
global flag

command = read_ircode(ird)
print(command, end = " ")
print(flag, end = " ")
if command == "Ok":

if flag == True:
led.value(1)
flag = False

248

www.keyestudio.com

print("led on")
else:

led.value(0)
flag = True
print("led off")

time.sleep(0.1)

Code Explanation

1. We set a Boolean variable here, it has only two possible values: True or

False.

2. When we press the “OK” button, the Shell will show “OK”. Then we

set a Boolean variable (flag) to True, the LED will light up. If it is False, the

LED will go off. If we set it to False after lighting up the LED, press “OK”

again to turn off the LED.

Test Result

Wire up, run the code and look at the Shell. Press keys on the IR remote

control, the Shell will show values. Press“OK”to turn on the LED, and press

it again to turn off the LED.

249

www.keyestudio.com

Project 36: Comprehensive Experiment

Introduction

We did a lot of experiments, and for each one we needed to re-upload the

code, so can we achieve different functions through an experiment? In this

experiment, we will use an external button module to achieve different

functions.

250

www.keyestudio.com

Components

Raspberry

Pi Pico

Board*1

Raspberry Pi

Pico

Shield*1

Keyestudio

White LED

Module*1

Keyestudio

Button

Module*1

Keyestudio

Rotary

Potentiometer*1

Keyestudio

IR

Receiver*1

Keyestudio

Joystick

Module*1

HC-SR04

Ultrasoic

Sensor*1

Keyestudio

6812 RGB

Module*1

MicroUSB

Cable*1

3P Dupont

Wire*5

4P Dupont

Wire*1

5P Dupont

Wire*1

Remote

Control*1

251

www.keyestudio.com

Connection Diagram

Test Code
'''
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 36
* Comprehensive experiment
* http://www.keyestudio.com

'''
from machine import Pin, PWM
import array, time
import random
import rp2

potentiometer = machine.ADC(28)
button = Pin(16, Pin.IN)
led = PWM(Pin(14))
led.freq(1000)

252

www.keyestudio.com

ird = Pin(11,Pin.IN)
B = machine.Pin(22, machine.Pin.IN)
X = machine.ADC(26)
Y = machine.ADC(27)
configure the pins used with the ultrasonic sensor
trigger = Pin(6, Pin.OUT)
echo = Pin(7, Pin.IN)
Configure the number of sk6812 LEDs, pins and brightness.
NUM_LEDS = 4
PIN_NUM = 15
brightness = 0.2

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":
"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

"*": "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait = 1
complete = 0
seq0 = []
seq1 = []

while wait == 1:
if ird.value() == 0:

wait = 0
while wait == 0 and complete == 0:

start = time.ticks_us()
while ird.value() == 0:

ms1 = time.ticks_us()
diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete == 0:

ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:

complete = 1

253

www.keyestudio.com

seq1.append(diff)

code = ""
for val in seq1:

if val < 2000:
if val < 700:

code += "L"
else:

code += "H"
print(code)
command = ""
for k,v in act.items():

if code == v:
command = k

if command == "":
command = code

return command

@rp2.asm_pio(sideset_init=rp2.PIO.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def sk6812():

T1 = 2
T2 = 5
T3 = 3
wrap_target()
label("bitloop")
out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp("bitloop") .side(1) [T2 - 1]
label("do_zero")
nop() .side(0) [T2 - 1]
wrap()

Create the StateMachine with the sk6812 program, outputting on Pin(16).
sm = rp2.StateMachine(0, sk6812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [0 for _ in range(NUM_LEDS)])

def pixels_show():
dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])

254

www.keyestudio.com

for i,c in enumerate(ar):
r = int(((c >> 8) & 0xFF) * brightness)
g = int(((c >> 16) & 0xFF) * brightness)
b = int((c & 0xFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)
time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

Ultrasonic sensor detects distances, the unit is cm
def getDistance(trigger, echo):

Produces 10us square wave
trigger.low() # Pull the trigger pin low
time.sleep_us(2)
trigger.high()
time.sleep_us(10)# Pull the trigger pin high for 10us before pulling the trigger pin low
trigger.low()

while echo.value() == 0: # Create a while loop to check whether the value of echo pin is 0 or not, and record
the time

start = time.ticks_us()
while echo.value() == 1: # Create a while loop to check whether the value of echo pin is 1 or not, and record

the time
end = time.ticks_us()

d = (end - start) * 0.0343 / 2 # Multiply the journey time (end-start) by the speed of sound (343.2 m/s, which
is 0.0343 cm per microsecond), the product of that equation is divided by two

return d

keys = 0
nums = 0

def toggle_handle(pin):
global keys
keys += 1

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)

def show6812():
R = random.randint(0,255)
G = random.randint(0,255)
B = random.randint(0,255)

255

www.keyestudio.com

for i in range(NUM_LEDS):
pixels_set(i, (R, G, B))
pixels_show()

time.sleep(0.3)

def IRreceive():
command = read_ircode(ird)
print(command)

def showJoystick():
B_value = B.value()
X_value = X.read_u16()
Y_value = Y.read_u16()
print("button:", end = " ")
print(B_value, end = " ")
print("X:", end = " ")
print(X_value, end = " ")
print("Y:", end = " ")
print(Y_value)
time.sleep(0.1)

def adjustLight():
pot_value = potentiometer.read_u16()
print(pot_value)
led.duty_u16(pot_value)
time.sleep(0.1)

def showDistance():
distance = getDistance(trigger, echo)
print("The distance is ：{:.2f} cm".format(distance))
time.sleep(0.1)

while True:
nums = keys % 5
print(nums)
if nums == 0:

show6812()
elif nums == 1:

IRreceive()
elif nums == 2:

showJoystick()
elif nums == 3:

adjustLight()
elif nums == 4:

256

www.keyestudio.com

showDistance()

Code Explanation

1. Each time the button on the button module is pressed, the original value

of the“keys +”will plus 1. The value divided by 5, it will get a remainder (0,

1, 2, 3, 4). Different remainders correspond to different functions. We will

create 5 functions to achieve them.

2. Add or reduce sensors or modules when wiring, then change the code

to achieve the function that we want.

Test Result

Wire up the components, supply power via a USB cable and run the code.

In the beginning, the values of“keys +”and the remainder are 0, the LEDs

257

www.keyestudio.com

on the RGB module randomly displays colors.

Press the button, the LEDs will go off, the values of “ keys + ” and the

remainder are 1. This implements the function of sending information from

the infrared receiver module. If we put the infrared remote control towards

the receiver module, press a button, the receiver module receives

information, as illustrated below.

Press the button again, the values of “keys +”and the remainder are 2,

which can read the analog values of X axis and Y axis of the joystick module.

(Note: because there is no signal to return to the“IRreceive()”function, we

need to press any button on the remote control again at this point). The

258

www.keyestudio.com

values of the KEY interface (Z axis) are shown below.

As shown in the figure, press the button again, the values of“keys +”and

the remainder are 3. We can use the external adjustable potentiometer

module to adjust the PWM values of the LED (GP14) interface, then the

brightness of the LED on the white LED module will change.

Press the button again, the values of“keys +”and the remainder are 4. We

can use the ultrasonic sensor to detect distances, they are displayed on the

Shell.

Press the button again, the value of“keys +”is 5 and the remainder is 0, the

LEDs on the RGB module will blink again.

259

www.keyestudio.com

6. Resources:

Download test code:

https://fs.keyestudio.com/KS3021

	1.Introduction
	2.Kit List
	Keyestudio 8002b Audio Power Amplifier

	3.Raspberry Pi Pico and Thonny
	3.1.Raspberry Pi Pico
	3.2.MicroPython IDE-----Thonny
	Download and Burn Firmware
	Download and Install Thonny IDE

	3.3 Install Drivers
	3.4 Thonny User Interface
	3.5 Add Modules
	3.6 Keyestudio Raspberry Pico IO Shield

	4.Projects
	Project 1: Lighting up LED
	Project 2: Traffic Light Module
	Project 3: Button Sensor
	Project 4: Obstacle Avoidance Sensor
	Project 5: Tilt Module
	Project 6: Reed Switch Module
	Project 7: PIR Motion Sensor
	Project 8: Active Buzzer
	Project 9: 8002b Audio Power Amplifier
	Project 10: RGB Module
	Project 11: Potentiometer
	Project 12: Sound Sensor
	Project 13: Photoresistor
	Project 14: NTC-MF52AT Thermistor
	Project 15 Thin-film Pressure Sensor
	Project 16: Joystick Module
	Project 17: SK6812 RGB Module
	Project 18: Rotary Encoder
	Project 19: Servo Control
	Project 20: Ultrasonic Sensor
	Project 21: IR Receiver Module
	Project 22: DS1307 Clock Module
	Project 23: TM1650 4-Digit Tube Display
	Project 24: HT16K33_8X8 Dot Matrix Module

	5. Comprehensive Experiments
	Project 25: Breathing LED
	Project 26: Button-controlled LED
	Project 27: Alarm Experiment
	Project 28: PIR Motion Sensor
	Project 29: Speaker Module
	Project 30: Rotary Encoder
	Project 31: Rotary Potentiometer
	Project 32: Sound Activated Light
	Project 33: RGB Module
	Project 34: Ultrasonic Sensor
	Project 35: IR Remote Control
	Project 36: Comprehensive Experiment

	6. Resources:

