Ml
o

www.keyestudio.com

Keyestudio Raspberry Pi Pico 24 in 1 Sensor Kit

Contents

1 INEFOAUCTION ...ttt 3
2. KT LIST oottt sttt bttt bbb senns 4
Keyestudio 8002b Audio Power AmMPplifier.......eerneceneceneeeeseeeeines 4

3. Raspberry Pi Pico and ThONNY ...t 8
3.1. RASPDEITY Pi PiCO ..ottt s s sssssasanes 8

3.2. MicroPython IDE----- TRONNY . 15
Download and Burn FIrMWare............ccerrnenenensinsireseeeeeeiseeseneens 16
Download and Install Thonny IDE.............ccrneeeeeeeeeieenaen, 17

3.3 INSTAII DIIVEFS ..ttt seses 23

3.4 Thonny User INterface ...t sees 26

3.5 Add MOUIES ...ttt 36

A, PrOJECES ..ottt sttt s s s sss st s s s sssssessssssssnsssesnnanes 42
Project 1: LIGhting UP LED ...ttt sassnes 42
Project 2: Traffic Light Module.........eeeee e 48
Project 3: BUttON SENSON ...t 52
Project 4: Obstacle Avoidance SENSON ... 58
Project 5: Tilt MOAUIE ...ttt 63
Project 6: Reed Switch Module..........eeeeeeeee e, 68
Project 7: PIR MOTION SENSOT ... sesstseessssessssasesassssssanens 73

Ml
o

www.keyestudio.com
Project 8: ACHIVE BUZZEN ...ttt sssssees 78
Project 9: 8002b Audio Power AmMPIifier.......eeeecereeeeeeeeeeee e, 82
Project 10: RGB MOAUIE ...ttt 88
Project 17: POtentiomMEter...... e, 99
Project 12: SOUNA SENSON ...t ssssssssssssssssssees 104
Project 13: PhOtOreSiStOr ...ttt sessseens 109
Project 14: NTC-MF52AT Thermistor ... 114
Project 15 Thin-film Pressure SENSOr ..., 119
Project 16: Joystick ModUl@..........ooeeeeee e 124
Project 17: SK6812 RGB MOdUIE........ceeeeeeeereeeeee s 129
Project 18: Rotary ENCOAE ...ttt 137
Project 19: SErvo CONrol...... et sssses 144
Project 20: UItraSONIC SENSON ...ttt sssssssessssssssssessssnes 152
Project 21: IR Receiver MOdUIe.......eeeeeeeeeeseeetsee s 159
Project 22: DS1307 Clock MOdUIE. ... 167
Project 23: TM1650 4-Digit Tube Displayccccoeveeevecerrrsrrerecirenes 175
Project 24: HT16K33 8X8 Dot Matrix Module...........ccovererervrrecrrrenne. 188
5. Comprehensive EXPerimENTS.........eeeeeeesieeeisssssessstsssessssessssssssssssssnens 196
Project 25: Breathing LED ...t 196
Project 26: Button-controlled LED. ..., 201
Project 27: Alarm EXPerimeENnt........ceeueeceinenireeisseisee s esssesssssssssssssssees 205
Project 28: PIR MOTION SENSOF ...ttt seesaens 209

Ml
o

www.keyestudio.com

Project 29:
Project 30:
Project 31:
Project 32:
Project 33:
Project 34:
Project 35:
Project 36:

6. Resources:.....

Speaker MOAUIE.........eeeeee e, 213
ROtary ENCOAEr ... 220
Rotary Potentiometer....... e 224
Sound Activated Light.........coeireeeeeeeeeeeeeeeseeseens 227
RGB MOAUIE ...ttt 230
UIErasonic SENSOF ... eseeens 235
IR REMOtE CONIOL ... 244
Comprehensive EXperiment...........eveceneenressseenessennnn. 249
.. 259

1. Introduction

The Keyestudio Raspberry Pi Pico 24 in 1 sensor kit mainly contains 24

commonly used sensors/modules, the Raspberry Pi Pico board, the

Raspberry Pi Pico expansion board and Dupont wires.

The 24 sensors and modules are fully compatible with the Raspberry Pi

Pico shield. You only need to stack the Raspberry Pi Pico board onto the

Raspberry Pi Pico shield, and hook up them with Dupont wires, which is

simple and convenient.

To make you master the electronic knowledge, detailed tutorials

(MicroPython),

schematic diagrams, wiring methods and test code are

included. Through these projects, you will have a better understanding

Ml
o

www.keyestudio.com

about programming, logic and electronics.

2. Kit List
No. Picture Name QTyY

Keyestudio White LED

1 1
Module
Keyestudio Common

2 1
Cathode RGB Module
Keyestudio Traffic

3 1
Lights Module
Keyestudio Active

4 1
Buzzer
Keyestudio 8002b

5 1
Audio Power Amplifier
Keyestudio Button

6 1
Module

Ml
o

www.keyestudio.com

7 Keyestudio Tilt Sensor
Keyestudio PIR Motion
8
Sensor
Keyestudio Obstacle
9
Avoidance Sensor
Keyestudio 6812 RGB
10
Module
Keyestudio
11 NTC-MF52AT Analog
Thermistor
Keyestudio
12
Photoresistor
Keyestudio Sound
13
Sensor
Keyestudio
14
Rotary Potentiometer

Ml
o

www.keyestudio.com

15 Keyestudio IR Receiver
Keyestudio Reed
16
Switch Sensor
Keyestudio Rotary
17
Encoder Module
Keyestudio Joystick
18
Module
Keyestudio HT16K33
EemmamEe | 8X8 Dot Matrix Module
Keyestudio TM1650
20
4-Digit Tube Display
Keyestudio Thin-film
21
Pressure Sensor
Keyestudio DS1307
22
Clock Sensor

£

www.keyestudio.com

23

Keyestudio SRO1

Ultrasonic Sensor

24

9G 90° Servo

25

Raspberry Pi Pico Board

26

Keyestudio Raspberry
Pico 10 Shield

27

*OOO
L1110 © G,
*©00 [

Olpmsa:(exgﬂa

Keyestudio JMFP-4

17-Key Remote Control

28

USB Cable

29

F-F Dupont Wire

pv4
o

www.keyestudio.com

3. Raspberry Pi Pico and Thonny

3.1. Raspberry Pi Pico

L pi Plco

‘ ’EJ spberry Pi Pico |C|"'L FI

0
) g % .; -

At the end of January 2021, the Raspberry Pi Foundation launched the

Raspberry Pi Pico, which received a lot of attention due to its

high-performance and low-cost.

The size of Pico is 21Tmm *5Tmm, which is similar to Arduino Nano' s.

Raspberry Pi Pico

ORaspberry Pi Pico ©2020 , ,, BooTSEL :no

Raspberry Pi Pico is a low-cost, high-performance microcontroller board

8

Ml
o

www.keyestudio.com

with flexible digital interfaces. It integrates RP2040 microcontroller chip
designed by Raspberry Pi, with dual-core Arm Cortex MO+ processor
running up to 133 MHz, embedded 264KB of SRAM and 2MB of on-board
Flash memory, as well as 26 multi-function GPIO pins. For software
development, either Raspberry Pi's C/C++ SDK, or the MicroPython is

available. In this tutorial, we will use MicroPython.

The bare board does not come with pins and you need to solder them
yourself. This is a well-made board that can also be used as an SMD

component and soldered directly to a printed circuit board.

£

www.keyestudio.com

<« microUsSB

pal =

On-board LED

Boot Select

BOOTSEL

RP2040

Raspberry Pl Pico ©2020

1
DEBUG
.7 e @

Debug Pins

L]
) @
®
X
; -
[]
[]
L]
=
[]
o
®
X
[)
)
) @
®
®
[]
[]

The most predominant feature on the board is the microUSB connector at
one end. This is used both for communication and to supply power to the
Pico. An on-board LED is mounted next to the microUSB connector, it is
internally connected to GPIO pin 25. It" s worthwhile to note that this is the
only LED on the entire Pico board.

The BOOTSEL pushbutton switch is mounted a bit down from the LED, it
allows you to change the boot mode of the Pico so that you can load
MicroPython onto it and perform drag-and-drop programming.

At the bottom of the board, you' Il see three connections, these are for a

serial Debug option that we won’ t be exploring here.

10

£

www.keyestudio.com

In the center of the board is the brains of the whole thing, the RP2040 MCU,
which is capable of supporting up to 16MB of off-chip Flash memory,
although in the Pico there is only 4MB.

® Dual-core 32-bit Arm Cortex MO+ processor

® Runs at 48MHz, but can be overclocked to 133MHz

® 30 GPIO pins(26 exposed)

® Can support USB Host or Device mode

® 8 Programmable I/O(PIO) state machines

VBUS
VSYS
GND
3V3-EN

m.

o
BB BB BEREBEEEBEEEBEBE B

GND

BOOTSEL

GND GND

GND GND

GND GND

=
L]
) @
) @
e
>
*
L
L
N J
L]
L]
L]
L J
L]
el
L]
L]

L
o™
o~
o
Lo B
o
o
o
-
>
—
—
[}]
o
a
%
©
o

The Pico is a 3.3V logic device, however, it can be powered with a range of
power supplies thanks to a built-in voltage converter and regulator.

GND: Ground connection. 8 grounding wires plus an additional one on the

11

Ml
o

www.keyestudio.com

3-pin Debug connector. They are square as opposed to rounded like the
other connections.

VBUS: This is the power from the microUSB bus, 5V. If the Pico is not being
powered by the microUSB connector then there will be no output here.
VSYS: This is the input voltage, which can range from 2 to 5V. The on-board
voltage converter will change it to 3.3V for the Pico.

3V3: This is a 3.3V output from the Pico’ s internal regulator. It can be used
to power additional components, providing you keep the load under
300ma.

3V3 EN: You can use this input to disable the Pico’ s internal voltage
regulator, which will shut off the Pico and any components powered by it.
RUN: It can enable or disable the RP2040 microcontroller, it can also reset

it.

12

Ml
o

www.keyestudio.com

VBUS
VSYS
GND
3V3_EN
3V3 OUT

L]
[

GP28
GND
GP27
GP26
RUN
GP22
GND
GP21
GP20
GP19
GP18
GND
GP17
GP16

. Raspberry Pi Pico © 2020

There are 26 exposed GPIO connections on the Raspberry Pi Pico

board.They are laid out pretty-well in order, with a“gap”between GP22 and
GP26 (those "missing” pins are used internally). All these pins have multiple
functions, and you can configure up to 16 of them for PWM. There are two
12C buses, two UARTSs, and two SPI buses, these can be configured to use a

wide variety of GPIO pins.

The Pico has three Analog-to-Digital Converters, they are ADC0O-GP26,
ADC1-GP27, ADC2-GP28, and plus ADC-VREF converter used internally for
an on-board temperature sensor. Note: The ADCs have a 12-bit resolution.
However, the MicroPython has scaled the 12-bit resolution into a 16-bit
resolution, which means that we will receive ADC values from 0 to 65535.

13

Ml
o

www.keyestudio.com

The microcontroller’ s working voltage is 3.3V, indicating that 0

corresponds to OV and 65535 corresponds to 3.3V.

You can also provide an external precision voltage-reference on the
ADC VREF pin. One of the grounds, the ADC_GND on pin 33 is used as a

ground point for that reference.

--

Raspberry Pi Pico Configuration
Dual-core Arm Cortex-M0 + @ 133MHz
2 x SPI,2 x 12C, 2 x UART
264KB of SRAM, and 2MB of on-board Flash memory
16 PWM channels
QSPI bus controller, supporting up to 16 MB of
external Flash memory
USB 1.1 with host and device support
DMA controller
8 x Programmable 1/O (PIO) state machines for
custom peripheral support
30 GPIO pins, of which 4 can optionally be used as
analog inputs

Drag-and-drop programming using mass storage over

pv4
o

www.keyestudio.com

Pinout Diagram:

(52d9) a31

LUARTO TX | 12C0SDA J SPIORX | GPO__ i
2
[_GND K

[12C18DA § spiosck | 6P2 i}

[i2c1scL } spioTx JGP3

6
L UART1 RX § I2coScL | sPiocsn } GRS B

Ly vBUS |

) vsys |

L] GND |

37

4 3v3(ouT) |

3
34 I

@
.o

8 3
12C1 SDA f spiosck f GP6 R - GP27 12C1 SCL
PIO T GP’ 1 ADC 1
12C1 SCL 0 cif GP26 | Apco [12C1 SDA

UART1 TX § 12cospa § spnrx | GP8 R 30

L]
L
L]
L
L
L
L]
L]
[]
L]
L]
[]
L]
L]
[]
L
L

I 2 29
13 28
T 78 27
I 15 (§ GP20 |
| _cPi2 BT A GP19 |
| UARTORX § 12c0ScL | sPiicsn § GP13 Bl F18 GP18 § SPI0SCK § 12C1 SDA |
18 bi]
ST 5 2
EEE 20 2
B rower | Ground [UART/UART (defaulty [l crio,pio,andPwivi [l aoc [st [1zc B Debugging

Raspberry Pi did release a ton of technical documentation, plus a great
guide called Get Started with MicroPython on Raspberry Pi Pico. It' s
available in softcover, and as a PDF download as well. For more information,
please refer to:

https://www.raspberrypi.com/products/raspberry-pi-pico/

3.2. MicroPython IDE----- Thonny

Programming the Pico: You could use C/C++ or MicroPython.

15

Ml
o

www.keyestudio.com

MicroPython is an interpreted language that is made specifically for
microcontrollers. Many microcontroller users have familiarity with C/C++
as they are used on the Arduino and ESP32 boards. In this tutorial, we will
use Thonny recommended by Raspberry Pi. Thonny bills itself as a “Python
IDE for Beginners” , and it is available for Windows, Mac OSX and Linux. It
was also part of the Raspberry Pi operating system(formerly Raspbian).

Boot and Install MicroPython: The first thing that we need to do is to get

MicroPython installed onto the Pico.

Download and Burn Firmware

Go to the official website to download the UF2 file:

https://www.raspberrypi.com/documentation/microcontrollers/#getting-s

tarted-with-micropython

|| rp2-pico-20210902-v1.17.uf2

What | downloaded is . Once the

download is complete, we proceed to burn the firmware.

With BOOTSEL held down, then plug the Pico into Raspberry Pi or your
computer’ s USB port.

Release it after the connection was finished. You should see a drive

appearing on your computer with the name “RP/-RPZ2" .

| Pictures

E Yideos

en_windows_10_ent

= RPI-RPZ (E:]

- RPI-RPZ (E:]

¥ Metwork

16

https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，
https://www.raspberrypi.com/documentation/microcontrollers/#getting-started-with-micropython，

£

www.keyestudio.com

Move the UF2 file into “"RPI-RPZ’ , and the Raspberry Pi Pico will

automatically restart. At this point, the burning is complete.

Mame Drate modified Type

s Quick access

B Desktop +
‘v Downloads Ly

| | rp2-pico-20210802-v1.17.uf2 2021/12/13 1035 UF2 File

=] Documents Ly

[&=] Pictures 4

B This PC
il 30 Objects
B Desktop
"—__l Documents
‘v Downloads
.h Music
[&] Pictures
ﬁ Videos
= en_wind
- RPI-RP2 .

o RPI-RP2 (E:) |+ Copy to RPI-RP2 (E:) |

o Metwork

Download and Install Thonny IDE

Enter the official website to download Thonny, we should download the
latest version for Windows.

Link: https://thonny.org/

17

£

www.keyestudio.com

Thonny

Python IDE for beginners

File Edit View Run Tools Help
D@ 0% 229 @

factorial py

def fact(n}:
if n=8:
return 1
else:
return fact{n-1) * n

n = int{input(“Enter a natural number o

[
print("Its factorial is", FactGN) fact

EIntas 2 natesal nembas: 3

i

def fact(n):
ifn===8
retur
else:
Fetur
Shell
»»» EDebug | i Local variables

MName Value

3

Variables
MName
fact

n

fact

def fact(n):
if n == a:

Value
<function fact :

3

else:
peturn fact(E-1) = n

Local variables

Mame Value

n

After downloading, we start installing the software. Click “Next” , then click

"I accept the agreement” and click “Next” again. After that, we choose

"Create desktop icon" and click “Next”, or just click "Next" to go to the next

step (you can open the file in the corresponding folder).

i Setup - Thonny

Select Additional Tasks
Which additional tasks should be performed?

then dick Next.

Create desktop icon:

Select the additional tasks you would like Setup to perform while installing Thonny,

x

T

Cancel

a5 h

18

£

www.keyestudio.com

When we see the contents shown below, click "Install" to complete the

installation.
i Setup - Thonny - x
Ready to Install
Setup is now ready to begin installing Thonny on your computer. % F

Click Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:
C:\Program Files (x88)\Thonny

Additional tasks:
Create desktop icon

< Back Cancel

Install
R g Y

Finally, click "Finish".

i Setup - Thonny —

=i+ O%
Great success!

i |

: d Thonny is now upgraded. Run it via shortout or right-dick a
imp andom = Ty file and select "Edit with Thonny™.
randir

guess = int(input

i while n != "guess i
= if guess < n: 1
print(”gL
guess = j
elif guess »
rint (" Computers are useless, They can only give you
print("gt ANSWErS,
guess = 3
else: —Pablo Picasso

print("yc

Einish !

Now we run the Thonny software. First, choose the language we need and

“Raspberry Pi” in “Initial settings” , then click “Let’ s go!” .

19

Ml
o

www.keyestudio.com

Language:

Initial settings:

= O
English ~
Standard
Standard
Raszpberry Pi
Let's go!

Next, we will see the interface as shown below.

Thonny - <untiled= @ 1:1 - O *
1. I/__ Switch to
* B M O ®»® @ =
= mode
New Load Save Stop Zoom Quit
| <untitled> %
| Shell |
>>>
Python 3.7.9

Click on the text in the top right of the window to switch to "Regular

Mode". Then restart the program, the interface will be like this as illustrated

20

Ml
o

www.keyestudio.com

below.
e Tk
File Edit View Run Tools Help
NEH 0% @
=untitled = Assistant
Shell
323>

Pythan 3.7.9

Click on the word “Python” followed by a version number at the
bottom-right of the Thonny window, then choose “MicroPython (Raspberry

Pi Pico)” .

21

£

www.keyestudio.com

T Thonny - <untitled> @ 1:1 - O X
File Edit View Run Tools Help
JEH O% @
zuntitled=
Shell
b}
v The same interpreter which runs Thonny (defauli)
MicroPython (Raspberry Pi Pico)
| Configure interpreter..
Python 379 |

The Raspberry Pi Pico interpreter is only available in the latest version of
Thonny. If you' re running an older version, you can’ t choose the

corresponding interpreter. After choosing the interpreter, the interface will

be like this as follows.

22

Ml
o

www.keyestudio.com

T& Thonny - =untitled= @ 1:1 — O X
File Edit View Run Tools Help

15H O

=untitled =

Shell

W

MicroPython (Raspberry Pi Pico)

3.3 Install Drivers

Wire the Pi Pico board with the USB port of a computer via a MicroUSB. If

the Pi Pico shield has installed MicroPython, and installed “Board CDC “ on

the computer, then it will shows corresponding ports of “Pi Pico Serial Port
(COM) " on Device Manager. If you have a Raspberry Pi, you can connect

the Pico to the Raspberry Pi directly. The Raspberry Pi has a lot of built-in

software that can be used directly. If wire the Pico with the computer,

23

Ml
o

www.keyestudio.com

please follow the steps below.
Windows 10

When plug the Pico into the computer, the system will automatically
identify serial port and install corresponding driver. You can find “USB
Serial” on Device Manager. On my computer is COM4. You can find the

corresponding COM port in Thonny options (Tools-Options-Interpreter).

24

£

www.keyestudio.com

B Thooiy - <urtteds @ 1 =
File Edit View Run Tools Help
JEH O w
<untitled = .
T& Thonny options X
1
General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant
Which interpreter or device should Thonny use for running your code?
MicroPython (Raspberry Pi Pico) v
Details
Connect your device to the computer and select corresponding port below
{lock for your device name, "USB Serial” or "UART").
If you can't find it, you may need to install proper USB driver first.
Port
Pi Pico Serial Port (COM4)
Shell
22>
Install or update firmware
oK Cancel

MicroPython (Raspberry Pi Pico)

If it shows the following information, indicating that your Pico board is
sucessfully connected to the computer.

MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with RP2040

Type “help()” for more information.

Then we input the following command behind >>>.

machine.Pin(25, machine.Pin.OUT).value(1)

25

£

www.keyestudio.com

Press “Enter” , if the on-board LED lights up, it means that Thonny works.

T Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

1ZHd O
zuntitled =

Shell

2

@

»>3) machine.Pin(25, machine.Pin.0UT).value(1)

>

- O x

MicroPythan (Raspberry Pi Pico)

3.4 Thonny User Interface

After installing the IDE and the driver, now we will introduce Thonny user

interface. At the top is the main menu, there are “File” , "Edit" , "View" ,

“Run” , “Tools” and “Help” .

26

Ml
o

www.keyestudio.com

T Thonny - <zuntitled= @ 1:1

File Edit View Run Tools Help F—-—_
JEH O @

<untitled=

1 |

Shell

b

2>

L4

MicraPython (Raspberry Pi Pica)

Click “File” , it shows some operations related to files.

27

Ml
o

www.keyestudio.com

Th Thonny - <untitled= @ 1:1

b

File Edit View Run Tools Help
|] New Ctel+N
(% Open.. Ctrl+0
Recent files ¢
Close Ctrl+W
Close all Ctrl+Shift+ W
|l Save Cirl+S
Save Al files Cirl+Al+S
Save as.. Ctrl+Shift+5
Save copy...
Move [rename...
Print... Ctrl+P
Exit Alt+F4
Shell
b3 3
2

v

MicroPython (Raspberry Pi Pico)

Click "Edit”

pasting.

, these are some options about code, such as copying, cutting,

28

£

www.keyestudio.com

Te Thonny - =untitled= @ 1:1
File Edit View Run Tools Help

B Undo Cirl+Z
Redo Ctrl+Y

<l
Cut Cirl+X
Copy Cirl+C
Paste Ctrl+V
Select all Ctrl+A
Indent selected lines Tab
Dedent selected lines Shift+Tab
Replace tabs with spaces
Toggle comment Ctrl+3
Comment out Alt+3
Uncomment Alt+4
Auto-complete Cirl+space
Find & Replace Ctrl+F
Clear shell Cirl+L

Shell

22>

22>

v

MicraPython (Raspberry Pi Pica)

In the View drop-down menu, these are the tools to assist you. For example,

if we do not tick Shell (the Shell is the “command line” of the Pico, and you

can execute code directly here.), the result won' t be displayed. Click

“Files” , the files we saved will be shown on the left.

29

£

www.keyestudio.com

Tq Thonny - <untiled= @ 1:1
File Edit View Run Tools Help

el Assistant
Exception

suntited Fijac

1 Heap
Help
Notes
Object inspector
Outline
Program tree
« Shell
Stack

Variables

Program arguments

Plotter

Increase font size Ctrl+ +

Decrease font size Ctrl+-

Focus editor Alt+E
Shell

Focus shell Alt+S
2
22

L4

MicraPython (Raspberry Pi Pica)

We can select interpreter in the Run drop-down menu, there are also some

shortcuts used in programming.

30

pv4
o

www.keyestudio.com
T Thonny - <untited= @ 1:1 - O X
File Edit View Run Tools Help
Q5 @ Selectinterpreter..
citidss J Run current script F5
Debug current script (nicer) Ctrl+F5
1 Debug current script (faster) Shift+F3
£ Debug current script (birdseye) Ctrl+Shift+B
", Step over Fo
. Step into F7
.4, Step out
.4 Resume F8
=! Run to cursor Ctrl+F8
Step back Ctrl+B
B Run current script in terminal Ctrl+T
Dock user windows
Pygame Zero mode
& Stop/Restart backend Ctrl+F2
Interrupt execution Cirl+C
el Send EOF / Soft reboot Ctr+D
; A
icroPythd_ seonned Pi Pico with RP2040
1p()" for more informatior
22
MicroPython v1.17 on 2021-@9-02; Raspberry P1 Pico with RP2040
ype “help()" Tor more intormation.
0 v
MicroPython (Raspberry Pi Pico)

In Tools menu, we can select interpreter, font and import modules, etc.

31

pv4
o

www.keyestudio.com

UESHd O
zuntitled=

1|

Tq Thonny - <untitled> @ 1:1
File Edit View Run Tools Help

Manage packages...
B Open system shell...

Open Thonny program folder...

Cpen Thonny data folder...

Manage plug-ins..
Options...

TOr mar

e information.

2021-89-82; Raspberry

Pi

Pico

W -i_.‘_-l.:

RP2040

TOr mor

e information.

2021-89-82; Raspberry

Pi

Pico wit

RP2040

L4

MicroPython (Raspberry Pi Pico)

32

£

www.keyestudio.com

File Edit View Run Tools Help
JEd 0 @
ciitlads T Thonny options X
= General Interpreter Editor Theme & Font Run & Debug Terminal Shell Assistant
Ul theme v Editor font | Consolas w14 |wv
Syntax theme | Default Light v 10 font Courier New w12 |«
Preview
. def foo(bar):
2 if bar is None:
print('The answer is', 33)
5 unclosed string = "blah, blah
: =
23>
Shil Enter an integer: 2.5 L
ValueError: invalid literal for int({) with base 10: r
Lo W
%% NE! Some style elements change only after restarting Thonny!
0K Cancel
22 v

MicroPython (Raspberry Pi Pico)

In Help menu, we will see “Help contents” , “Version history” and more.

The icons below the main menu are our commonly used tool shortcuts.

33

£

www.keyestudio.com

Ta Thonny - =zuntitled= @ 1:1
File Edit View Run Tools Help

LIEEE

unfitled -

Stop/Restart backend

4| Run current script |

Open files

4| Create new files |

Shell
A

>

W

>

MicroPython (Raspberry Pi Pica)

When we open or save files, it will shows the following contents.

T Where to open from? b4 T& Where to save to? b4

This computer This computer

Raspberry Pi Pico Raspberry Pi Pico

We can open programs saved on the computer or the Pico, or save them

on This computer or Raspberry Pi Pico.

Copy the code below to the Thonny and save it to the computer as test.py.

34

Ml
o

www.keyestudio.com

T Thonny - CA\Users\Administrator\Desktop\testpy @ 7:12
File Edit View Run Tools Help

JEZW O w
test.py

from machine import Pin
from utime import sleep
import utime

led = Pin(25, Pin.0OUT)
while True:

led.value(1)
utime.sleep ms(1000)

led.value(0)
utime.sleep ms(1000)

Shell
rrz

0

>
0

W

MicraPython (Raspberry Pi Pico)

Click @ to run the code, the on-board LED will blink at 1 second

intervals, then click 0 to stop, the LED won’ t blink. If we unplug the

MicroUSB cable and plug it in again, the LED won’ t blink after powering

up. This is because we did not name the file main.py and save it to the Pico.

Click “File” , then click "Save as...” to choose Raspberry Pi Pico. After that,

enter main.py as the file name (don’ t forget to enter the .py file extension)

and click “OK" . Run the code again, the LED will continue to blink.

35

£

www.keyestudio.com

T o

File Edit

BY=;

test.py

Shell

>3
2>

>

View Run Tools Help

0

@

from machine
from utime im
import utime

led = Pin(25,
while True:

led.value
utime.sle

led.value
utime,.sle

T Save to Raspberry Pi Pico

:l Raspberry Pi Pico

. Name
& DHT22.py
& ht16k33_matrix.py
& matrix_fonts.py
& rotary.py
& rotary irq_rp2.py
& urtc.py

File name: main.py{

Size (bytes)
5660
1433

10270
5056
159
6083

OK Cancel

v

MicroPythan (Raspberry Pi Pico)

When we unplug the cable again, then plug it in and power on, the LED will

blink. This is because the Raspberry Pi Pico starts running the program

saved on main.py after powering up.

3.5 Add Modules

36

Ml
o

www.keyestudio.com

Python is a powerful language due to its modules. Python scripting
language with the most rich and powerful class library, enough to support
the vast majority of day-to-day applications. By importing modules, this
makes it easier for us when using some complex sensors.

The method is simple, just save the module that we need to the Pico, or
open the file saved on our computer, click “File” to choose “Save as” , then
save it to the Pico board (right click the mouse, you can delete files). For
instance, | saved some library files required for these courses on my Pico.
Click "View" to choose “Files” , they will be displayed on the left of the

interface.

37

Ml
o

www.keyestudio.com

Ta Thonny - g X
File Edit View Run Tools Help

0 ©

Files

1]
>

This computer
i,

]

AMD

3]

!

4 inetpub
4 Intel
/

/

B B

KidsBlock Link
OpenBlock 5

3]

Raspberry Pi Pico =
& DHT22.py
@ ht16k33_matrix.py

& main.py /

& matrix_fonts.py

& rotary.py
. Shell
& rotary irq_rp2.py =
& urtc.py Use Stop/Restart to reconnect.
D v

MicroPython (Raspberry Pi Pico)

When using sensors, we can import the corresponding modules directly.

Ml
o

www.keyestudio.com

* http://www.keyestudio.com

import machine
import time
import json

import matrix fonts P—""

from htl16k33_matrix import ht16k33_matrix

clock_pin = 1
data_pin = @

bus = 8
i2c_addr_left = 6x70
use_i2c = True

def scan_for_devices():

i2c = machine.I2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock_pin)})
devices = i2c.scan()
if devices:

for d in devices:

print(hex(d))

else:

print('no i2c devices')

3.6 Keyestudio Raspberry Pico 10 Shield

(1) Overview

The Keyestudio Raspberry Pico 10 shield is designed for Raspberry Pi Pico.
No soldering required. To make the connection easier, the interfaces on the
shield have silkscreen labels. The silkscreen labels of the 3pin interface
generally are G, V, S. On the shield, G represents GND, V represents the VCC
interface (3.3V), and S represents digital ports or analog ports. The pitch of
the pin header on the shield is 2.54 mm. The sequence of the pin header is
the same as the Pico board’ s when wiring. The shield also comes with a
reset button, a PWR power indicator and four holes.

The shield offers a variety of communication interfaces including 12C, UART,
SPI, analog 10 and digital IO, and provides an interface of power supply

ranging from 6.5V to 12V.

39

Ml
o

www.keyestudio.com

Specifications:

Output current: <500mA

DC input voltage: 6.5 - 12V

Output voltage: DC 3.3V/5V

Ambient temperature(recommended): -10°C ~ 50°C
Dimensions: 45.339MM *83.617MM

Pin pitch: 2.54mm

Schematic diagram

e 1
651 U T i :
i) el | _sssr [}/
i L =
= 10wV Thout 6 3 - g -
ke =) I 4y 3
i EEELE | i |
& g £ i el ot ed el FEFERREM — n d &= = i 1
DEBUG b LLELL 4 A B
EEEEEEEEEEEBEE SEEEEEEELS L.EEE
A i SEEEGEEEREBEBERE] SBEREEBEEE kkEEEEE
e 5 cEEkERE
) 335

1 swoik

SWDIO |

L H] |
“FEFPFTEFFEFEFEL, -ERFPEFRERERRRL,
i - |
FEFFFRFFEREREE,, TRFFFFERRREEL,

sv
N3
- 4 GRO (TX) 4 GBI (TX) 4GP (SCL) 4GP (SCL) [PO (CSn)
1 ool 3 GPL R 3 GPA RX) 3 GP0 (SDA) 3 GBI5 (SDA) 3 P8 RX)
i ower OUT 5 7 . = ¢ S ¢ = = ERT;‘;
- 1 ||' 1 I 1 ||' 1 ||' 3 P8 (CLK)
' Power i \,%Rm- UARTI o= uca_:-,!.-j m L i—|||
e 3V3 V3 3
e ™ L
]

L (csn)
)
L ()
10

olelale
] e

3V3

]
._|H.M,_,.g

Pinout

40

Ml
o

www.keyestudio.com

Interfaces
for Raspberry
UART interfaces IO interfaces Pi Pico board DC power supply

W L W T e e TS R T e

FoF o 2 F R 8 R BRSO R AN

» SWCLK
Power indicator
» SWDIO

SPl interfaces «

IIC interfaces <«— i

I0interfaces ADC 2v-5v 2V POWer | pacet button

reference | power SUEply
I supply
voltage 3V3 EN 5V power
supply

As shown below, stack the Raspberry Pi Pico board onto the Raspberry Pi
Pico shield.

41

Ml
o

www.keyestudio.com

4. Projects

There are 24 sensors and modules in this kit. Next, we will analyze and
introduce how they work step by step. Interface sensors with the Raspberry
Pi Pico board and Pico shield, run test codes then observe experimental
phenomenon.

Note: please wire up components according to the given connection

diagrams.

Project 1: Lighting up LED

*eras,
roaas L oess.

Overview

In this project, we will make an experiment to light up the white LED

module. The high and low levels can be controlled by programming, then

42

Ml
o

www.keyestudio.com

the state of the LED can be controlled.

Working Principle

The two circuit diagrams are given. The left one is wrong wiring-up
diagram. Why? Theoretically, when the S terminal outputs high levels, LED
will receive the voltage and light up.

Due to limitation of IO ports of Pico board, weak current can’ t make LED
brighten.

The right one is correct wiring-up diagram. GND and VCC are powered up.
When the S terminal is a high level, the triode Q1 will be connected and
LED will light up(note: current passes through LED and R3 to reach GND by
VCC not 10 ports). Conversely, when the S terminal is a low level, the triode
Q1 will be disconnected and LED will go off.

The triode Q1 is equal to a switch and R1 and R3 stand for limited resistors
which can curb the size of current to prevent from burning out

components

43

£

www.keyestudio.com

~DI
WHITE LED

-r.»'-n; Ik gR2 ; e
(0603 104 B 5 5L 8 1 ‘f 2 |||-G?~ED
= 0603 1k WHITE LED
GND
Correct wiring-up diagram Wrong connection diagram

Components

Keyestudio
Raspberry 3P Micro
Raspberry Pi | White LED
Pi Pico Dupont USB
Pico Shield*1 | Module*1
Board*1 Wire*1 | Cable*1

Wiring Diagram

Ml
o

www.keyestudio.com

UARTO UARTI

3v3 3v3 : : - -
GND GND

GP GP9 o

GPO GP8 J N o mn

SPID sen

GP13 O Raspt
=

P12

GPM
cpio
V3
GND

Power_OUT
RESET,

fritzing

Test Code:

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 1.1

* turn on led

* http://www.keyestudio.com
from machine import Pin
led = Pin(0, Pin.OUT)# create led, connect LED to pin 0, and set pin0 to OUTPUT
led.value(1)# high levels

Code 2:

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 1.2
* Blink
* http://www.keyestudio.com
from machine import Pin

import time

led = Pin(0, Pin.OUT)# create led, connect LED to pin 0, and set pin0 to OUTPUT
while True:

led.value(1)# led lights up
time.sleep(1)# wait for 1s

led.value(0)# led goes off

45

Ml
o

www.keyestudio.com

time.sleep(1)# wait for 1s

Code Explanation
Machine module is indispensable, we will use import machine or from

machine import... to program pico with microPython.

time.sleep() function is used to set delayed time, as time.sleep(0.01),

which means, the delayed time is 10ms.

1. led = Pin(0, Pin.OUT), created a pin example and we name led.
0 is indicative of connected pin GP0O, Pin.OUT represents output mode,
can use .value() to output high levels (3.3V)led.value(1) or low levels

(OV)led.value(0).,

import machine is used to import modules. When creating pins examples,

it will change into led = machine.Pin(0, machine.Pin.OUT)

2. while True is loop function,

It means that sentences under this function will loop unless True changes
into False. For the function while, led.value(1), outputs high levels to the
pin O; then LED lights up. Then the delayed function time.sleep(1) will wait

for 1s. When led.value(0) output low levels to the pin 0, the LED will go off,

46

Ml
o

www.keyestudio.com

and the function time.sleep(1) will wait for 1s, cyclically, and LED will flash.

Test Result

Code 1: upload the code and power on, the white LED lights up
Code 2: upload the code and power on, the white LED flashes with an

interval of 1s.

47

Ml
o

www.keyestudio.com

Project 2: Traffic Light Module

T AF IC
L GH

SGN L

Overview

In this lesson, we will learn how to control multiple LED lights and simulate
the operation of traffic lights.

Traffic lights are signal devices positioned at road intersections, pedestrian
crossings, and other locations to control flows of traffic.

In this kit, we will use the traffic light module to simulate the traffic light.

Working Principle

In previous lesson, we already know how to control an LED. In this part, we

only need to control three separated LEDs. Output high levels to the signal

48

£

www.keyestudio.com

R(3.3V), then the red LED will be on.

[" U U B G e

— Header5

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico

Shield*1

Keyestudio
DIY Traffic
Lights
Module*1

5P
Dupont
Wire *1

Micro
USB
Cable*1

49

Ml
o

www.keyestudio.com

Wiring Diagram

.GNU

-
I
o
-
Q
™
T
<
o
-

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 2
* Traffic_Light
* http://www.keyestudio.com
import machine

import time

led_red = machine.Pin(14, machine.Pin.OUT)
led_amber = machine.Pin(13, machine.Pin.OUT)
led_green = machine.Pin(12, machine.Pin.OUT)

while True:
led_green.value(1) # the green light is on for 5s
time.sleep(5)# after 5s
led_green.value(0)# the green LED will go off
foriin range(3):# the yellow light is on for 3s
led_amber.value(1
time.sleep(0.5)
led_amber.value(0)
time.sleep(0.5)

Power_OUT

fritzing

RESET,

50

£

www.keyestudio.com

led_red.value(1) # the red LED light up for 5s
time.sleep(5)
led_red.value(0)

Code Explanation

Create pins, set pins mode and delayed functions.

We use the for loop
The simplest form is for i in range(),
In the code, we used range(3), which means the variable i starts from 0,

increase 1 for each time

Test Result
Upload the code, the green LED will be on for 5s then off, the yellow LED

will flash for 3s then go off and the red one will be on 5s then off.

51

2l
o

www.keyestudio.com

Project 3: Button Sensor

Overview

In this kit, there is a Keyestudio single-channel button module, which
mainly uses a tact switch and comes with a yellow button cap.

In previous lessons, we learned how to make the pins of our single-chip
microcomputer output a high level or low level. In this experiment, we will
read the high level (3.3V) and low level (0V).

We can determine whether the button on the sensor is pressed by reading

the high and low level of the S terminal on the sensor.

Working Principle
The button module has four pins. The pin 1 is connected to the pin 3 and

the pin 2 is linked with the pin 4. When the button is not pressed, they are

52

Ml
o

www.keyestudio.com

disconnected. Yet, when the button is pressed, they are connected. If the

button is released, the signal end is high level.

L
Rl
0603 4.7K
1 g
S | M v
1 ; . 3 C1 YRR G
© 0603 100NF |
2 4 e
'} -
274 GND
= GND

53

Ml
o

www.keyestudio.com

Components

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico Shield*1

Keyestudio
Button

Sensor*1

3P Dupont
Wire*1

Micro USB
Cable*1

Wiring Diagram

Test Code:

fritzing

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 3

* button

54

Ml
o

www.keyestudio.com

* http://www.keyestudio.com
from machine import Pin

import time

button = Pin(15, Pin.IN, Pin.PULL UP)

while True:
if button.value() ==
print("You pressed the button!")
information
else:
print("You loosen the button!")

time.sleep(0.1) #delay in 0.1s

Code Explanation

#press to print the

button = Pin(15, Pin.IN, Pin.PULL UP), we define the pin of the button as

GP15 and set to PULL-UP mode

We can use button = Pin(15, Pin.IN) to set INPUT mode, at this time, the

pins are in high resistance state.

55

Ml
o

www.keyestudio.com

1. button.value(), read levels of buttons. Function returns High or Low

2. if..else.. sentence, when the logic judge is TRUE, the code under the if

will be activated; otherwise, the code udder the else will be activated.

3. When pico detects the button pressed, the signal end is low level (GP 15
is low level). button.value() is 0. If pico detects the button unpressed,

button.value() is 1 and else sentence will be activated.

Test Result
Upload the code, and look at the Shell page. When the button is pressed,
"You pressed the button!” will be displayed; if released, “You loosen the

button!” will appear, as shown below;

56

pv4
o

www.keyestudio.com

You
You
You
You
You
You
You
You
You
You
You

Shell 3¢ |

NN

loosen the button! i
loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

loosen the button!

pressed the button!

pressed the button!

pressed the button! I

57

£

www.keyestudio.com

Project 4: Obstacle Avoidance Sensor

Overview

In this kit, there is a Keyestudio obstacle avoidance sensor, which mainly
uses an infrared emitting and a receiving tube. In the experiment, we will
determine whether there is an obstacle by reading the high and low level

of the S terminal on the sensor.

Working Principle

NE555 circuit provides IR signals with frequency to the emitter TX, then the
IR signals will fade with the increase of transmission distance. If

encountering the obstacle, it will be reflected back.

58

£

www.keyestudio.com

When the receiver RX meets the weak signals reflected back, the receiving
pin will output high levels, which indicates the obstacle is far away. On the
contrary, it the reflected signals are stronger, low levels will be output,
which represents the obstacle is close. There are two potentiometers on
the module, and one is for adjusting emission power, another one is for

receiving frequency.

VCC
RX :
TX
N
R4
S 0603 22k
veo = | raff o
¥ 1 £ 1.
C7 = ij.|| e § jvee
603 10UFGND - 7
NE555 [%
VOO 5
i R7 Ul
= 1 spidinatl, dox
GND
1
T - vee % 3 INF 4
; G 3 10NF
2 —vee 0603 10k
=1
el GND -

GND

59

Ml
o

www.keyestudio.com

Components

Keyestudio
Raspberry
Raspberry Pi Obstacle | 3P Dupont | Micro USB
Pi Pico
Pico Shield*1 | Avoidance Wire*1 Cable*1
Board*1
Sensor*1

Wiring Diagram

3
i . | w m i y
s ':’i:iﬂ:'l:"l' = =)

Power_OUT

RESET,

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 4

Ml
o

www.keyestudio.com

* Infrared obstacle avoidance sensor
* http://www.keyestudio.com
from machine import Pin

import time

sensor = Pin(16, Pin.IN)
while True:
if sensor.value() ==
print("There are obstacles")
else:
print("All going well")

time.sleep(0.1)

Note:
Upload the test code and wire up according to the connection diagram.
After powering on, we start to adjust the two potentiometers to sense

distance.

1. Adjust the potentiometer transmitting power. Make the P LED at the

critical point of ON and OFF states.

61

£

www.keyestudio.com

2. Adjust the potentiometer receiving frequency. Rotate it clockwise, the
frequency will increase. Make the S LED at the critical point of ON and OFF

states, then the 38KHz square wave can be produced.

Test Result
Upload the code, when the sensor detects the obstacle, the Shell page will
show “There are obstacles”; if the obstacle is not detected, "“All going well”

will be shown.

62

Ml
o

www.keyestudio.com

Shell 3

All going well o
411 going well

411 going well

411 going well

411 going well

411 going well
There are obstacles
There are obstacles
There are obstacles
There are obstacles
There are obstacles

Project 5: Tilt Module

Overview

In this kit, there is a Keyestudio tilt sensor. The tilt switch can output signals
of different levels according to whether the module is tilted. There is a ball

inside. When the switch is higher than the horizontal level, the switch is

63

Ml
o

www.keyestudio.com

turned on, and when it is lower than the horizontal level, the switch is
turned off. This tilt module can be used for tilt detection, alarm or other

detection.

Working Principle

Pl
o]
— (o]
i i S
RI il
| | G
— 0805 4.7K —_I—_
GND N

R2

0805 1K

The working principle is pretty simple. When pin 1 and 2 of the ball switch
P1 are connected, the signal S is low level and the red LED will light up;
when they are disconnected, the pin will be pulled up by the 4.7K R1 and
make S a high level, then LED will be off.

Components

64

Ml
o

www.keyestudio.com

- =B
Raspberry Keyestudio
Raspberry Pi 3P Dupont | Micro USB
Pi Pico Tilt
Pico Shield*1 Wire*1 Cable*1
Board*1 Sensor*1

Wiring Diagram

youMS)11

Test Code'"’

fritzing

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 5

* Tilt switch

* http://www.keyestudio.com

Ml
o

www.keyestudio.com

from machine import Pin

import time

TiltSensor = Pin(17, Pin.IN)

while True:
value = TiltSensor.value()
print(value, end =" ")
if value==0:
print("The switch is turned on")
else:
print("The switch is turned off")

time.sleep(0.1)

Code Explanation

Code explanation is as same as the project 3.

Test Result

Upload the code successfully, and observe the Shell.
Make the tilt module incline to one side, the red LED on the module will be

off and the Shell page will display “1 The switch is turned off” ; by contrast,

66

pv4
o

www.keyestudio.com

if you make it incline the other side, the red LED will light up and “0 The

switch is turned on” will be shown.

Shell 3

0 The
0 The
0 The
0 The
1 The
1 The
1 The
1 The
1 The
1 The
1 The

switch is
switch is
switch is
switch is
switch is
switch is
switch is
switch is
switch is
switch is
switch is

turned on
turned on
turned on
turned on
turned off
turned off
turned off
turned off
turned off
turned off
turned off

67

Ml
o

www.keyestudio.com

Project 6: Reed Switch Module

Overview

In this kit, there is a Keyestudio reed switch module, which mainly uses a
MKA10110 green reed component.

The reed switch is the abbreviation of the dry reed switch. It is a passive
electronic switch element with contacts.

It has the advantages of simple structure, small size and easy control.

Its shell is a sealed glass tube with two iron elastic reed electric plates.

In the experiment, we will determine whether there is a magnetic field near
the module by reading the high and low level of the S terminal on the

module; and, we display the test result in the shell.

68

Ml
o

www.keyestudio.com

8 isg [Jr1
0603 4.7k | o603 1k
YD1
| RED LED
o]
—|L‘Cl:’.‘
e []I’_']
GND Read Switch Modula
GMD

Working Principle

Reed switch is an abbreviation of the dry reed contacts a passive
electronic switching elements, and has the advantages of simple structure,
small size and ease of control, its shell is a sealed glass tube, the tubes are
installed two iron elastic reed plate, but also filling called rhodium

metal inert gas. In peacetime, the glass tube in the two reeds made of
special materials are separated. When a magnetic substance close to the
glass tube, in the role of the magnetic field lines, the pipe within the

two reeds are magnetized to attract each other in contact, the reed will
suck together, so that the junction point of the connected circuit

communication. After the disappearance of the outer magnetic reed

69

Ml
o

www.keyestudio.com

because of their flexibility and separate, the line is disconnected. Therefore,
as a use of the magnetic field signals to control the line switching device,
reed tube can be used as a sensor for counting the number, spacing, etc,,

and also are widely used in a variety of communication devices

Components

Keyestudio
Reed Micro
Raspberry Pi | Raspberry Pi 3P Dupont
Switch USB
Pico Board*1 | Pico Shield*1 Wire*1
Module*1 Cable*1

Wiring Diagram

70

Ml
o

www.keyestudio.com

UARTO UARTI
33 %

GND| GND

ap Gp

GPO GP

SPI0 sePn

3 GP13 o
cnu E
3 e g
12c0 o]

P21 GPIS

e

GP!

el
@
@
=1
1]
2
=
[2]
:r.

Test Code
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 6
* Reed Switch
* http://www.keyestudio.com
from machine import Pin

import time

ReedSensor = Pin(18, Pin.IN)
while True:
value = ReedSensor.value()

print(value, end = " ")

71

£

www.keyestudio.com

if value ==
print("A magnetic field")
else:
print("There is no magnetic field")

time.sleep(0.1)

Test Result

Upload the code. When the sensor detects a magnetic field, val is 0 and the
red LED of the module lights up, "0 A magnetic field" will be displayed;
when no magnetic field is detected, val is 1, and the LED on the module

goes out, "1 There is no magnetic field" will be shown, as shown below.

72

Ml
o

www.keyestudio.com

Shell 3

1 There is no magnetic field o
1 There is no magnetic field
1 There is no magnetic field
1 There is no magnetic field
1 There is no magnetic field
0 A magnetic field

0 A magnetic field

0 A magnetic field

0 A magnetic field

0 A magnetic field

0 A magnetic field

Project 7: PIR Motion Sensor

Overview

In this kit, there is a Keyestudio PIR motion sensor, which mainly uses an
RE200B-P sensor elements. It is a human body pyroelectric motion sensor
based on pyroelectric effect, which can detect infrared rays emitted by
humans or animals, and the Fresnel lens can make the sensor's detection
range farther and wider.

In the experiment, we determine if there is someone moving nearby by

73

Ml
o

www.keyestudio.com

reading the high and low levels of the S terminal on the module. The

detected results will be displayed on the Shell.

Working Principle

The upper left part is voltage conversion(VCC to 3.3V). The working voltage
of sensors we use is 3.3V, therefore we can’ t use 5V directly. The voltage

conversion circuit is needed.

When no person is detected or no infrared signal is received, and pin 1 of
the sensor outputs low level. At this time, the LED on the module will light
up and the MOS tube Q1 will be connected and the signal terminal S will
detect Low levels.

When one is detected or an infrared signal is received, and pin 1 of the
sensor outputs a high level. Then LED on the module will go off, the MOS

tube Q1 is disconnected and the signal terminal S will detect high levels.

74

£

www.keyestudio.com

XC6206P332MR. (662K) SOT-23

g
}Tn
(o]
0,0
4
}l(«:
w

- z
2 el =
= W=t =
s |g GHL) & 3V3 =
Z =] 5V
= GND
GND ~D1
LED-RED
V3
R1 3
0603 510R 10K 10K Pl
V3 U1 1 I¥T 8
o r 1
VCCp——- 2
2
s . BE Q1 MOS 3
— Header3
GND

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico Shield*1

Keyestudio
PIR
Motion

Sensor*1

3P Dupont
Wire*1

Micro
USB
Cable*1

Wiring Diagram

75

Ml
o

www.keyestudio.com

.l
5.

3
A
3
=}
=
3
m

Power_OUT
RESET,

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 7
* PIR motion
* http://www.keyestudio.com
from machine import Pin

import time

PIR = Pin(19, Pin.IN)
while True:
value = PIR.value()

print(value, end = " ")

£

www.keyestudio.com

if value == 1:

print("Some body is in this area!")
else:

print("No one!")

time.sleep(0.1)

Test Result

Upload the code, when the sensor detects someone nearby, value is 1, the
LED will go off and the Shell page will show “1 Somebody is in this area!” .

In contrast, the value is 0, the LED will go up and “0 No one!” will be shown.

[Shell 3¢ |

0 No one! |
0 No one!

0 No one!

0 No one!

1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!
1 Some body is in this area!

77

Ml
o

www.keyestudio.com

Project 8: Active Buzzer

Overview

In this kit, it contains an active buzzer module and a power amplifier
module (the principle is equivalent to a passive buzzer). In this experiment,
we control the active buzzer to emit sounds. Since it has its own oscillating

circuit, the buzzer will automatically sound if given large voltage.

Working Principle

78

Ml
o

www.keyestudio.com

01 Active
SR050 E UZzZer

0603 10k

From the schematic diagram, the pin of buzzer is connected to a resistor
R2 and another port is linked with a NPN triode Q1. So, if this triode Q1 is

powered, the buzzer will sound.

If the base electrode of the triode connected to the R1 resistor is a high
level, the triode Q1 will be connected.If the base electrode is pulled down
by the resistor R3, the triode is disconnected.

When we output a high level from the IO port to the triode, the buzzer will

emit sounds; if outputting low levels, the buzzer won’ t emit sounds.

Components

79

Ml
o

www.keyestudio.com

Raspberry Keyestudio
Raspberry Pi 3P Dupont | Micro USB
Pi Pico Active
Pico Shield*1 Wire*1 Cable*1
Board*1 Buzzer*1

Wiring Diagram

ONIHSVYM
H3il4dv

avas
JA0NW3Y

i
w
c
N
N
m
0

RESET,

fr%tzz’i ng

Test Code
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 8
* Active buzzer
* http://www.keyestudio.com
from machine import Pin

import time

Ml
o

www.keyestudio.com

buzzer = Pin(20, Pin.OUT)

while True:
buzzer.value(1)
time.sleep(1)
buzzer.value(0)

time.sleep(1)

Code Explanation

In the experiment, the pin is set to 20. When setting HIGH, the active
buzzer on the module will emit sounds; when setting LOW, the buzzer
won’ t chime.

Test Result

Upload the code and power on. The buzzer chimes

81

£

www.keyestudio.com

Overview

In this kit, there is a Keyestudio 8002b audio power amplifier. The main
components of this module are an adjustable potentiometer, a speaker,
and an audio amplifier chip;

The main function of this module is: it can amplify the output audio signal,

82

Ml
o

www.keyestudio.com

with a magnification of 8.5 times, and play sound or music through the
built-in low-power speaker, as an external amplifying device for some
music playing equipment.

In the experiment, we used the 8002b power amplifier speaker module to

emit sounds of various frequencies.

Working Principle

In fact, it is similar to a passive buzzer. The active buzzer has its own
oscillation source.Yet, the passive buzzer does not have internal oscillation.
When controlling the circuit, we need to input square waves of different
frequencies to the positive pole of the component and ground the
negative pole to control the buzzer to chime sounds of different

frequencies.
J1

GND

T Lo
2 VCC ||I PR
I Control IN
- I_Ll ,. A
Control IN = J— ShiD V02
N 2 7
e GND 1UF | 2 57 o ; vCC , BEEI
RP-3386P C2 Rl N+ VDD —
2 | e 4 . r 2 3 1
1 IN- LB T 1UF Bliors
1UF] 8002B
GND
R2
| T |

=]
0603 20K

83

Ml
o

www.keyestudio.com

Components

Raspberry
Raspberry Pi
Pi Pico
Pico Shield*1
Board*1

Keyestudio
8002b Micro
Dupont
Audio USB
Wire3P*1
Power Cable*1
Amplifier*1

Wiring Diagram

9
cpg

layeadg

SwDIo

5V GND

5
S = |
|
o iy
.] - |
Power_OUT

RESET,

fritzing

84

Ml
o

www.keyestudio.com

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 9
* Passive buzzer

* http://www.keyestudio.com

from machine import Pin, PWM
from time import sleep

buzzer = PWM(Pin(21))

buzzer.duty u16(1000)

buzzer.freq(523)#DO
sleep(0.5)
buzzer.freq(586)#RE
sleep(0.5)
buzzer.freq(658)#MiI
sleep(0.5)
buzzer.freq(697)#FA
sleep(0.5)
buzzer.freq(783)#S0O

85

Ml
o

www.keyestudio.com

sleep(0.5)
buzzer.freq(879)#LA
sleep(0.5)
buzzer.freq(987)#SI
sleep(0.5)
buzzer.duty u16(0)

Code Explanation

We use PWM of the machine,

buzzer = PWM(Pin(21)) is a PWM example and the pin of the buzzer is
connected to GP21

buzzer.duty u16(1000) is used t o set duty cycle(1000/65535) and the
larger this value, the louder the buzzer. When you set to 0, the buzzer
doesn’ t emit sounds.

buzzer.freq() is frequency setting.

Firstly, we set duty cycle to 1000/65535, and frequency of DO, RE, MI, FA,
SO, LA and SI and emit DO,RE,MI,FA,SO,LA and SI for 0.5s and turn off the

buzzer.

86

Ml
o

www.keyestudio.com

Test Result

Upload the code and power on. Then the audio power amplifier will emit

DO, Re, Mi, Fa, So, La, Si

87

£

www.keyestudio.com

Project 10: RGB Module

Overview

Among these modules is a RGB module. It adopts a F10-full color RGB
foggy common cathode LED. We connect the RGB module to the PWM
port of MCU and the other pin to GND(for common anode RGB, the rest
pin will be connected to VCC). So what is PWM?

PWM is a means of controlling the analog output via digital means. Digital
control is used to generate square waves with different duty cycles (a signal

that constantly switches between high and low levels) to control the analog

88

Ml
o

www.keyestudio.com

output.In general, the input voltages of ports are OV and 5V. What if the 3V
is required? Or a switch among 1V, 3V and 3.5V? We cannot change

resistors constantly. For this reason, we resort to PWM.

)

1T

Duty Cycle: 05

Voltage

Time

For Arduino digital port voltage outputs, there are only LOW and HIGH
levels, which correspond to the voltage outputs of OV and 5V respectively.
You can define LOW as “0” and HIGH as “1' , and let the Arduino output
five hundred ‘0" or “1" within 1 second. If output five hundred ‘1" , that
is 5V; if all of whichis ‘0" ,thatis OV; if output 250 01 pattern, that is 2.5V.
This process can be likened to showing a movie. The movie we watch are
not completely continuous. Actually, it generates 25 pictures per second,
which cannot be told by human eyes. Therefore, we mistake it as a
continuous process. PWM works in the same way. To output different
voltages, we need to control the ratio of 0 and 1. The more ‘0" or ‘1’

output per unit time, the more accurate the control.

89

£

www.keyestudio.com

Working Principle

For our experiment, we will control the RGB module to display different

colors through three PWM values.

Components

A 35O, 71
‘31- | —p3 | B i
2 G
f | |' GND I_:gZ_FDR R g
LI — R | 3
Common cathode RGB —200R. |
i Terminal

== S

Keyestudio
Raspberry Common 4P Micro
Raspberry Pi
Pi Pico Cathode Dupont USB
Pico Shield*1
Board*1 RGB Wire*1 Cable*1

Module *1

90

Ml
o

www.keyestudio.com

Wiring Diagram

000U0O

RGB LED

5V GND

T
. 1
n@
|
Ll T o
Go000000000R000 |

Power_OUT
RESET,

fritzing

Test Code 1:

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10.1
* RGB
* http://www.keyestudio.com
from machine import Pin

from time import sleep

red = Pin(9, Pin.OUT)
green = Pin(10, Pin.OUT)

91

Ml
o

www.keyestudio.com

blue = Pin(11, Pin.OUT)

while 1:
red.value(1)
green.value(0)
blue.value(0)
sleep(1)
red.value(0)
green.value(1)
blue.value(0)
sleep(1)
red.value(0)
green.value(0)
blue.value(1)

sleep(1)

Code 2:

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 10.2

* RGB

* http://www.keyestudio.com

Ml
o

www.keyestudio.com

from machine import Pin, PWM
from time import sleep

pwm r = PWM(Pin(9))

pwm_g = PWM(Pin(10))
pwm b = PWM(Pin(11))

pwm r.freq(1000)
pwm _g.freq(1000)
pwm _b.freq(1000)

def light(red, green, blue):
pwm r.duty u16(red)
pwm_g.duty ul16(green)
pwm_b.duty u16(blue)

while 1:
light(65535, 0, 0)#red
sleep(1)
light(65535, 25088, 0)#orange
sleep(1)
light(65535, 65535, 0)#yellow

93

Ml
o

www.keyestudio.com

sleep(1)

light(0, 65535, 0)#green

sleep(1)

light(0, 0, 65535)#blue

sleep(1)

light(0, 65535, 65535)#green
sleep(1)

light(41216, 8448, 61696)#purple

sleep(1)

Code Explanation:
Code 1
Red, green and blue represent ports of red, green and blue color.

Connect them to GP9 GP10 GP11 and setto 9, 10 and 11.

The RGB will show red color, green color and blue color with an interval of

one second.

Code 2:

In the code 2, we use PWM output, the frequency we set is

freq(1000), .duty u16(). The data stands for the proportion of color red,

94

Ml
o

www.keyestudio.com

green and blue. The larger the data of the duty cycle, the larger the

proportion of the color;

In the experiment, we can adjust the proportion of red, green and blue of
RGB LED by setting corresponding values. Thus, the RGB can display the

corresponding color.
Note: The duty ratio we set above is at most .duty u16(65535). 65535 is
equal to 256*256-1(0~65535). When we compare the color table below, we

only need to multiply the following value by 256. .

RGB Color Chart

95

£

www.keyestudio.com

Hex Code|lecimal Code Hex Code|Decimal Coda

Color Hamae Color Hamae

Heds
IndianRed

RGEB

RGH

205,92.5

RGH

173,255 47

1272550

260,128,114

|E9967A

233,150,122

LightSalrmaon
Cnmson

R
FireBnick
DarkRed
Finks

Fink

FRADTA
D430
FFO0O0

B22222

EBOOD0

255,160,122
220.20.60
255,00
178,34 34

139.0.0

265,152 203

LLightPink

25-'5132 193

- _|_|':

152.251, 152

1“233 144

Sealresn

ForestGraen

Graen OOE00H

Fnaka ez] areradi M |22 .:'- 18l

DarepHink FF1493 25520147

Dok Groan ODGA00
MedsrmVrolatHead CT1585 = 199.21.133
ol AT W T =

MeveDrab

Clear BOE000
Dk OlrmGeaen RERDAT

60,179,113
45,139,87
M,139,34
0,128,0

0100 0

10714235

1281280
#6107 47

LightSeaGreen | 20B2AA
DiagkCyran O0EBER
Teal 00B0S0

Yellows BluasiCyans

Gald FFOT00 §2556.2150

‘32178170
0139139
0.428.128

pe=scherne. cfmlcolarMame=ForestGreen 25510

96

pv4
o

www.keyestudio.com

omsilk FFFEOC |255,248 220
lanchedAlmond|FFEBCD [255 235 205
Bisque FFE4CA 255 228 196
avapihite FFOEAD 255222173

245 222,179

| S-S, 3

DarkGoldennod
Feru
Chocolate

= addianown
Slenna

Srowem

Bidn0H
COBS3IF
DMIE
aB4513
Al 220

el =]

FFFFFF

184,134, 11

205,133,563

21010530
139 89 149
10,82 45

165,42 .42

255 255 2556

FFFAFA |255.250,250
FOFFFO 240,255 240
FSFFFA |245.255 250
FOFFFF |240,.255 255
FOFEFF |240,248 255
FBFBFF |248,248 255
FSFSES |245 245 245

97

Ml
o

www.keyestudio.com

Test Result

Upload the code 1, the RGB on the module will show red, green and blue
color with an interval of 1s.
Upload the code 2, the RGB on the module will show red, orange, yellow,

green, cyan-blue, blue, purple and white color with an interval of 1s.

’ a31894

£ .
E
&

N 2

98

Ml
o

www.keyestudio.com

Project 11: Potentiometer

Overview

The following we will introduce is the Keyestudio rotary potentiometer
which is an analog sensor.

The digital 10 ports can read the voltage value between 0 and 3.3V and the
module only outputs high levels. However, the analog sensor can read the
voltage value through ADC analog ports(GP26~GP28) on the pico board.

In the experiment, we will display the test results on the Shell.

99

£

www.keyestudio.com

[

R1

flt
..-_'_‘:
]

Working Principle

Rotary potentiometer 10K

It uses a 10K adjustable resistor. We can change the resistance by rotating

the potentiometer. The signal S can detect the voltage changes(0-3.3V)

which are analog quantity

Components

- =B
Raspberry Keyestudio Micro
Raspberry Pi 3P Dupont
Pi Pico Rotary USB
Pico Shield*1 Wire*1
Board*1 Potentiometer*1 Cable*1

100

Ml
o

www.keyestudio.com

Wiring Diagram

GND

A AR R M ORAEME R R AR AR,
GP9 s S o 2 . e
o [e o e o LS
o e 3 { iy

sPI
1z

Jsjawonuslod

12co
P21 GPIS

GP20

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 11
* Rotary potentiometer
* http://www.keyestudio.com
import machine

import utime

potentiometer = machine.ADC(26)

101

Ml
o

www.keyestudio.com

while True:
pot value = potentiometer.read u16()
print(pot value)

utime.sleep(0.1)

1. Code Explanation

In the experiment, we create ADC examples, connect GP26(ADC(26))

2. .read u16(): this is used to read analog value, the range is 0~65535,
potentiometer.read u16() means that reading the output analog value

of pin ADC(26), then name pot value

3. utime.sleep() delayed function can work as same as the function
time.sleep().

utime.sleep() delayed function is as same as time.sleep()

Test Result

Run the test code and observe the corresponding simulation value
displayed in the Shell below. In the experiment, rotate the potentiometer

clockwise, the analog value increases, and turn the potentiometer

102

Ml
o

www.keyestudio.com

counterclockwise, the analog value decreases, the range is 65535, as

shown in the figure below.

[Shell 3¢ |

65535 o
65535
65535
65535
63503
61422
59566
5E366
57341
55581
52872

[

103

Ml
o

www.keyestudio.com

Project 12: Sound Sensor

Overview

In this kit, there is a sound sensor. In the experiment, we test the analog
value corresponding to the sound level in the current environment with it.

The louder the sound, the larger the analog value;

104

Ml
o

www.keyestudio.com

Working Principle

1206 10UF 16V A-type10%

1206 10UF 16V A-typel0%

41 . C6
41| Ii _1| Iz__|||.G_\D
L VCC
= Ll , u . voe
- C2 a2 © - e 3
. : 3 o
&= m Elsm:wg\.— n 3 __J o603 470
= 3 100NE E — 3
= e mic e [EI.’?DS 100NE ol
o Microphone GND o] 0603 Yellow-green
C4 — GND
= 0603 100NE ARD
GND
Rotary potentiometer
, RRL_
][R0 -
D1 vee -

IID\HHS T4 (RN =

=, GND

GND

It uses a high-sensitive microphone component and an LM386 chip.

We build the circuit with the LM386 chip and amplify the sound through
the high-sensitive microphone. In addition, we can adjust the sound
volume by the potentiometer. Rotate it clockwise, the sound will get

louder.

105

Ml
o

www.keyestudio.com

Components

- =B
Raspberry Keyestudio Micro
Raspberry Pi 3P Dupont
Pi Pico Sound USB
Pico Shield*1 Wire*1
Board*1 Sensor*1 Cable*1

Wiring Diagram

UARTO UARTI
v V3

GND GND

Test Code

auoydoidi

fritzing

106

Ml
o

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 12
* MicroPhone
* http://www.keyestudio.com
import machine

import utime

MicroPhone = machine.ADC(27)
while True:
value = MicroPhone.read u16()
print(value)

utime.sleep(0.1)

Code Explanation

The setting method is as same as the project 11. We use ADC(27) which
is ADC(1).

107

Ml
o

www.keyestudio.com

Test Result

Upload test code, rotate clockwise the potentiometer and speak at the MIC.

Then you can see the analog value get larger, as shown below

Shell ¢ |

560 o
Q
464

51z

108

Ml
o

www.keyestudio.com

Project 13: Photoresistor

Structure of a photoresistor

Electrode

1 O \

/./" \
Substrate

CDS

Overview

In this kit, there is a photoresistor which consists of a photosensitive
resistance element. Its resistance changes with the light intensity. Also, it
converts the resistance change into a voltage change.

We interface its signal terminal (S terminal) with the analog port of pico, so
as to sense the change of the analog value, and display the corresponding

analog value in the Shell.

109

£

www.keyestudio.com

Working Principle

If there is no light, the resistance is 0.2MQ and the detected voltage at the
terminal 2 is close to 0. When the light intensity increases, the resistance of

photoresistor and detected voltage will diminish.

5V

Photoresistor 0805

Ny ¢/, PH
N
1
; . A6
2 —vece 2 Rl
1 603 100NF 10K
= .
GND -
e GND
GND
Components

- | S

Raspberry
Raspberry Pi Keyestudio | 3P Dupont | Micro USB
Pi Pico
Pico Shield*1 | Photoresistor*1 | Wire*1 Cable*1
Board*1

Wiring Diagram

110

Ml
o

www.keyestudio.com

UARTO UARTI
3vi 3v3
GND GND

GP1 GP9

T
=
=]
-
o
A
(]

1zco 121

cp21 ap1s
GP20 GPle .
GND

fritzing
Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 13
* Photoresistance
* http://www.keyestudio.com
import machine

import utime

photoresistance = machine.ADC(28)
while True:
value = photoresistance.read u16()

print(value)

111

Ml
o

www.keyestudio.com

utime.sleep(0.1)

Code Explanation

The setting method is similar to the project 11. ADC(28) is channel
2(ADC(2)

Test Result

Wire up and upload the test code.
When the light intensity gets stronger, the analog value will get larger, as

shown below;

112

Ml
o

www.keyestudio.com

Shell 3¢
lo2y B
1749
1792
1728
1712
1664
1600
3360
1e5386
30023
35608
40921
45195 I

44106

113

Ml
o

www.keyestudio.com

Project 14: NTC-MF52AT Thermistor

Overview

In the experiment, there is a NTC-MF52AT analog thermistor. We connect
its signal terminal to the analog port of the Raspberry Pi Pico Board and

read the corresponding analog value.

We can use analog values to calculate the temperature of the current

114

Ml
o

www.keyestudio.com

environment through specific formulas. Since the temperature calculation
formula is more complicated, we only read the corresponding analog

value.

Working Principle

Pl 1 g

2__lvee

4.7K __Cl

Analog temperature — 0603 100NF

This module mainly uses NTC-MF52AT thermistor elements. The
NTC-MF52AT thermistor element can sense the changes of the
surrounding environment temperature. Resistance changes with the
temperature, causing the voltage of the signal terminal S to change.

This sensor uses the characteristics of NTC-MF52AT thermistor element to

convert resistance changes into voltage changes.

115

Ml
o

www.keyestudio.com

Components

- D

Raspberry Keyestudio
Raspberry Pi 3P Dupont Micro
Pi Pico NTC-MF52AT
Pico Shield*1 Wire*1 USB Cable*1
Board*1 Thermistor*1

Wiring Diagram

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 14

* Temperature sensor

116

Ml
o

www.keyestudio.com

* http://www.keyestudio.com
import machine
import utime

import math

sensor = machine.ADC(0)

while True:
temp = sensor.read u16()
print("Temperature ADC: ", end = " ")
print(temp)

utime.sleep(0.1)

Code Explanation

The setting method and experiment 11 are similar.

Test Result

Upload the test code, the more the temperature, the larger the analog

value. As shown in Shell page.

117

Ml
o

www.keyestudio.com

[Shell 3¢ |

lengmrdLure
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature
Temperature

HBUCT
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:
ADC:

£013%
26166
26182
26188
26188
286262
28262
28262
25294
26278
26278
26294
26294
26310

118

pv4
o

www.keyestudio.com

Project 15 Thin-film Pressure Sensor

Overview

In this kit, there is a Keyestudio thin-film pressure sensor. The thin-film
pressure sensor composed of a new type of nano pressure-sensitive
material and a comfortable ultra-thin film substrate, has waterproof and
pressure-sensitive functions.

In the experiment, we determine the pressure by collecting the analog
signal on the S end of the module. The smaller the analog value, the

greater the pressure; and the displayed results will shown on the Shell

119

Ml
o

www.keyestudio.com

Working Principle

When the sensor is pressed by external forces, the resistance value of
sensor will vary. We convert the pressure signals detected by the sensor
into the electric signals through a circuit. Then we can obtain the pressure

changes by detecting voltage signal changes.

vCeC
3
il 510K 1651 Ve
1 & i N+ VCC J
; = GND g
o [papE== = E
GND GND LM321
Rl B2
| = 1
1K 10K

120

Ml
o

www.keyestudio.com

Components

Keyestudio
Raspberry Micro
Raspberry Pi Thin-film 3P Dupont
Pi Pico USB
Pico Shield*1 Pressure Wire*1
Board*1 Cable*1
Sensor*1

Wiring Diagram

: e :
crar [orrs e N
000000000CTM000D-
bp SOty ¥4
NOR N % EI)

Test Code

fritzing

121

Ml
o

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 15
* Film pressure sensor
* http://www.keyestudio.com
import machine

import utime

film = machine.ADC(1)
while True:
value = film.read u16()
print(value)

utime.sleep(0.1)

Test Result

Upload code, when the thin-film is pressed by fingers, the analog value will

decrease, as shown below;

122

Ml
o

www.keyestudio.com

® @
®
!

fl
1]

Shell 3¢ |
o3332
a5535
a5535
21205
6369
8562
6289
5633
7248
6657
8785
9394
8994
5457

123

Ml
o

www.keyestudio.com

Project 16: Joystick Module

Overview

Game handle controllers are ubiquitous.

It mainly uses PS2 joysticks. When controlling it, we need to connect the X
and Y ports of the module to the analog port of the single-chip
microcomputer, port B to the digital port of the single-chip microcomputer,
VCC to the power output port(3.3-5V), and GND to the GND of the MCU.
We can read the high and low levels of two analog values and one digital
port) to determine the working status of the joystick on the module.

In the experiment, two analog values(x axis and y axis) will be shown on

Shell.

124

Ml
o

www.keyestudio.com

Working Principle

VEL 544

1 VCC
T 1Tx] | 10T
3 = 0
E [+ 11 | g
F I C3
o gm e B B = 0603 100NF
1 4 TE Jonydtick
0603 100NF y vee
= VCC] —|||-G}I1
—— GND GND)
GND i 020R
P11
- X)
: Y 5
- rYLED
2 VGG 0603-LED
; GND I [
s GN GND

In fact, its working principle is very simple. Its inside structure is equivalent

to two adjustable potentiometers and a button. When this button is not

pressed and the module is pulled down by R1, low levels will be output; on

the contrary, when the button is pressed, VCC will be connected (high

levels), When we move the joystick, the internal potentiometer will adjust

to output different voltages, and we can read the analog value.

125

Ml
o

www.keyestudio.com

Components

& o #

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico Shield*1

Keyestudio
Joystick
Module*1

5P Dupont
Wire*1

Micro USB
Cable*1

Wiring Diagram

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

fritzing

126

Ml
o

www.keyestudio.com

* lesson 16

* Joystick

* http://www.keyestudio.com
import machine

import utime

B = machine.Pin(22, machine.Pin.IN)

X = machine.ADC(26)

Y = machine.ADC(27)

while True:
B value = B.value()
X value = X.read u16()
Y value = Y.read u16()
print("button:", end = " ")
print(B value, end = " ")
print("X:",end =" ")
print(X value, end = " ")
print("Y:", end =" ")
print(Y _value)

utime.sleep(0.1)

127

£

www.keyestudio.com

Code Explanation

In the experiment, X is set to ADC(26), Y is set to ADC(27) and the pin of
the button is set to GP22(input mode). When displaying data, we can add

end = behind the function print() so as to not enter a new line while

printing data.

Test Result

Upload the test code, move the joystick, then the value of x axis and y axis
will change; press the thumb button, the value is 1; in contrast, the value is

0 as shown below;

128

£

www.keyestudio.com

| Shell 3¢ |
| DULLU: U A: J3U90 I: JJ3UUU [|
button: 0 X: 33016 ¥Y: 33048
button: 0 X: 33080 ¥Y: 33048
button: 0 X: 33016 ¥Y: 33000
button: 0 X: 33048 ¥Y: 33032
button: 0 X: 33048 ¥Y: 33176
button: 0 X: 33112 ¥: 33048
button: 0 X: 33080 ¥Y: 33048
button: 1 X: 33064 ¥: 33032
button: 1 X: 33032 ¥: 33016
button: 1 X: 33080 ¥: 33032
button: 1 X: 33048 ¥Y: 33064
button: 1 X: 33048 Y: 32808
button: 1 X: 33048 ¥Y: 33032
bl

Project 17: SK6812 RGB Module

Overview

In previous lessons, we learned about the plug-in RGB module and used
PWM signals to color the three pins of the module.

There is a Keyestudio 6812 RGB module whose the driving principle is
different from the plug-in RGB module. It can only control with one pin.
This is a set. It is an intelligent externally controlled LED light source with

the control circuit and the light-emitting circuit. Each LED element is the

129

Ml
o

www.keyestudio.com

same as a 5050 LED lamp bead, and each component is a pixel. There are
four lamp beads on the module, which indicates four pixels

In the experiment, we make different lights show different colors.

Working Principle

From the schematic diagram, we can see that these four pixel lighting
beads are all connected in series. In fact, no matter how many they are, we
can use a pin to control a light and let it display any color. The pixel point
contains a data latch signal shaping amplifier drive circuit, a high-precision
internal oscillator and a 12V high-voltage programmable constant current
control part, which effectively ensures the color of the pixel point light is

highly consistent.

The data protocol adopts a single-wire zero-code communication method.
After the pixel is powered up and reset, the S terminal receives the data
transmitted from the controller. The first 24bit data sent is extracted by the

first pixel and sent to the data latch of the pixel.

D1 D2 D3 D4
] o] d B i G ol A 1 o] 4 il o |4
GND-Il VSS DOUT Gm-lh VSS DOUT GND-IlI VSS DOUT G}T_)-Il vss DoUT |-
w\ 5V 5V 5V
T I, S B TI 21pN VDD | TI 2l pw wvop |2 TI 21 pw VoD {
WS2812B-4P Ll WS2812B4P 2 WS2812B-4P b WS2812B-4P L
I:s:s;:::s I:s:: QONE I:s:s;:::\f I:s:s::::\?
GND GND GND GND

130

Ml
o

www.keyestudio.com

Components

- | S

Raspberry Keyestudio
Raspberry Pi 3P Dupont Micro
Pi Pico 6812 RGB
Pico Shield*1 Wire*1 USB Cable*1
Board*1 Module*1

Wiring Diagram

a31 994 Z189

5]

A

S
8 | Ea

1
[

GP21

GP20

Power_OuUT
RESET,

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 17

131

Ml
o

www.keyestudio.com

*6812 RGB LED

* http://www.keyestudio.com

import array, time
from machine import Pin

import rp2

Configure the number of sk6812 LEDs, pins and brightness.
NUM LEDS =4
PIN NUM = 16

brightness = 0.1

@rp2.asm _pio(sideset init=rp2.PIO.OUT LOW,
out shiftdir=rp2.PIO.SHIFT LEFT, autopull=True, pull thresh=24)
def sk6812():

T1=2

T2=5

T3=3

wrap target()

label("bitloop")

out(x, 1) .side(0) [T3 - 1]

132

Ml
o

www.keyestudio.com

jmp(not x, "do zero") .side(1) [T1-1]
jmp("bitloop™) .side(1) [T2 - 1]
label("do zero")

nop() .side(0) [T2 - 1]
wrap()

Create the StateMachine with the sk6812 program, outputting on
Pin(16).

sm = rp2.StateMachine(0, sk6812, freq=8 000 000,
sideset base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.

ar = array.array("l", [0 for _in range(NUM LEDS)])

def pixels show():

dimmer ar = array.array("l", [0 for _in range(NUM LEDS)])

for i,c in enumerate(ar):

r = int(((c >> 8) & OxFF) * brightness)

133

Ml
o

www.keyestudio.com

g = int(((c >> 16) & OxFF) * brightness)

b = int((c & 0xFF) * brightness)

dimmer ar[i] = (g<<16) + (r<<8) + b
sm.put(dimmer ar, 8)

time.sleep ms(10)

def pixels set(i, color):

ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

def pixels fill(color):
foriin range(len(ar)):

pixels set(i, color)

RED = (255, 0, 0)

GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)

pixels set(0, RED)
pixels set(1, GREEN)
pixels set(2, BLUE)

134

Ml
o

www.keyestudio.com

pixels set(3, WHITE)

pixels show()

time.sleep(5)

foriin range(len(ar)):
pixels_set(i, BLACK)

pixels show()

Code Explanation

NUM LEDS = 4, there are four light beads, therefore, we set to 4

PIN NUM = 16, this is the pin number, we connect to GP16, can be
changeable

brightness = 0.1, this is the brightness setting, number 1 is the brightest
pixels show(), this function is used to refresh and display

pixels_set(i, color), this function is sued to set up the location of 6812RGB
pixels fill(color), display colors of all light beads

Test Result

Upload the code, wire up according to connection diagrams and power on.

Then we can see the light beads on the module show red, green, blue and

135

Ml
o

www.keyestudio.com

white color, as shown below;

136

Ml
o

www.keyestudio.com

Project 18: Rotary Encoder

Overview

In this kit, there is a Keyestudio rotary encoder, dubbed as switch encoder.
It is applied to automotive electronics, multimedia audio, instrumentation,

household appliances, smart home, medical equipment and so on.

In the experiment, it it used for counting. When we rotate the rotary
encoder clockwise, the set data falls by 1; if you rotate it anticlockwise, the

set data is up 1; and when the middle button is pressed, the value will be

137

Ml
o

www.keyestudio.com

show on Shell.

Working Principle

603 10K oy
D03 105
l— ‘11 CLK
Dl
||% | S
veep——
HDI-&I’}I’ enmder— e
GND - 53
L‘J

The incremental encoder converts the displacement into a periodic electri
c signal, and then converts this signal into a counting pulse, and the num
ber of pulses indicates the size of the displacement.This module mainly us
es 20-pulse rotary encoder components. It can calculate the number of pu
Ises output during clockwise and reverse rotation. There is no limit to cou

nt rotation. It resets to the initial state, that is, starts counting from 0.

138

Ml
o

www.keyestudio.com

Components

Raspberry Keyestudio Micro
Raspberry Pi Pico 5P Dupont
Pi Pico Rotary USB
Shield*1 Wire*1
Board*1 Encoder*1 Cable*1

Wiring Diagram

Japosua Aiejoy

2co [ri=}
5V GND

mgmg.Dbuﬁﬁmﬂﬂmnuoge g

o' {

Power_OUT
RESET,

fritzing

Test Code

139

Ml
o

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 18
* Encoder
* http://www.keyestudio.com
import time
from rotary irq rp2 import RotarylRQ
from machine import Pin
SW=Pin(20,Pin.IN,Pin.PULL UP)
r = RotarylRQ(pin_num clk=18,
pin_num dt=19,
min_val=0,
reverse=False,
range mode=RotaryIRQ.RANGE UNBOUNDED)
val old = r.value()
while True:
try:
val new = r.value()
if SW.value()==0 and n==0:
print("Button Pressed”)
print("Selected Number is : ",val new)

n=1

140

Ml
o

www.keyestudio.com

while SW.value()==0:
continue
n=0
if val old != val new:
val old = val new
print(‘result =', val new)
time.sleep ms(50)
except Keyboardinterrupt:
break

Code Explanation

1. In the experiment, we need to add the encoder module to pico first,

then import the module.You just need to save the .py file on the pico.

2. Add the encoder module and click file as follows;

Raspberry Pi Pico = 2€ if SW.value()==0 and n==0:
print("Button Pressed")
Bl lib print("Selected Number is : ",val new)
& nt16k33_matrixpy 2 1
& matrix_fonts.py 2 while SW.value()==0:
® rotary py | Shell 3¢ |
@ rotary_irg_rp2.py 33>
[

I urtc.py

¥

The above picture shows that we saved them in the pico successfully. Then

141

£

www.keyestudio.com

we can use from rotary irq rp2 import RotarylRQ

Next, we can see the pin port, SW=Pin(20,Pin.IN,Pin.PULL UP) means
the pin of SW is connected to GP20, pin num clk=18 shows that CLK is
connected to GP18. pin_ num dt=19 indicates that DT is linked with

GP19. These pins can be changed.

1. try/except is used to process the abnormal language of Python, try is

the executable code. Press Ctrl+C to exit program.

2. rvalue() value returning to the encoder: the value returning the

encoder

Test Result

Upload the code, rotate the knob on the rotary encoder clockwise, the
displayed data will decrease; in contrast, rotate the knob anticlockwise, the
data will rise. Equally, press the button on the rotary encoder, the value is

shown.

142

Ml
o

www.keyestudio.com

Shell 3¢ |

>33

Button Pressed
Selected

result
result
result
result
result
result
result

Humber is : 0

L T N o S A

-1

Button Pressed
Selected Number is : -1

143

£

www.keyestudio.com

Project 19: Servo Control

Overview

Servo motor is a position control rotary actuator. It mainly consists of a
housing, a circuit board, a core-less motor, a gear and a position sensor. Its
working principle is that the servo receives the signal sent by MCU or
receiver and produces a reference signal with a period of 20ms and width
of 1.5ms, then compares the acquired DC bias voltage to the voltage of the

potentiometer and obtain the voltage difference output.

In general, servo has three lines in brown, red and orange. The brown wire
is grounded, the red one is a positive pole line and the orange one is a

signal line.

144

£

www.keyestudio.com

(OV) GND
180° (+5V)
(PWM)
0 degrees 45 degrees 180 degrees
o
o
o
s]ala]
o
8
high |
™ T ps

Working Principle

When the motor speed is constant, the potentiometer is driven to rotate
through the cascade reduction gear, which leads that the voltage
difference is 0, and the motor stops rotating. Generally, the angle range of

servo rotation is 0° --180 °

The rotation angle of servo motor is controlled by regulating the duty cycle
of PWM (Pulse-Width Modulation) signal. The standard cycle of PWM
signal is 20ms (50Hz). Theoretically, the width is distributed

between 1ms-2ms, but in fact, it's between 0.5ms-2.5ms. The width

145

£

www.keyestudio.com

corresponds the rotation angle from 0° to 180°. But note that for different

brand motors, the same signal may have different rotation angles.

Controlling principle of Servo Arjles of the s8R0

are different at
PWM waves = different time period

The time of
high levelsis
s =2mes.
This time

period
decides the 180

The tirne of high hevels B 125ms

Make sure the frequency B0Hz

lhe calculation formula of angles of the servo
dagree = (high lavel time/ 2ms) 1B0²

Components

Raspberry
Raspberry Pi Micro
Pi Pico Servo*1
Pico Shield*1 USB Cable*1
Board*1

146

£

www.keyestudio.com

Wiring Diagram

fritzing

Test Code//Code 1:
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 19.1
* Servo test 1
* http://www.keyestudio.com
from machine import Pin, PWM
import time
pwm = PWM(Pin(0))

pwm.freq(50)

147

Ml
o

www.keyestudio.com

Angles correspond to duty cycle
0°----2.5%----1638
45°----5%----3276
90°----7.5%----4915
135°----10%----6553
180°----12.5%----8192

angle 0 = 1638

angle 90 = 4915

angle 180 = 8192

while True:
pwm.duty ul6(angle 0)
time.sleep(1)
pwm.duty u16(angle 90)
time.sleep(1)
pwm.duty u16(angle 180)

time.sleep(1)

Code 2:

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

148

Ml
o

www.keyestudio.com

* lesson 19.2

* Servo test 2

* http://www.keyestudio.com
from utime import sleep
from machine import Pin

from machine import PWM

pwm = PWM(Pin(0))#Pins of servo is connected to GP0
pwm.freq(50)#the cycle of 20ms, frequency is 50Hz
Angles correspond to duty cycle

0°----2.5%----1638

45°----5%----3276

90°----7.5%----4915

135°----10%----6553

180°----12.5%----8192

considering the error, set the duty cycle in the range of 1000~9000 to
rotate 0~180°

set the rotation angles of servo

def setServoCycle (position):

149

Ml
o

www.keyestudio.com

pwm.duty u16(position)
sleep(0.01)

Convert the angle of rotation to duty cycle
def convert(x,i m,i M, o m, o M):
return max(minfo M, (x-im)*(o M-om)// (i M-im)+ o m),

o m)

while True:
for degree in range(0, 180, 1):#rotate from 0° to 180°
pos = convert(degree, 0, 180, 1000, 9000)

setServoCycle(pos)

for degree in range(180, 0, -1):#rotate from 180° to 0°
pos = convert(degree, 0, 180, 1000, 9000)

setServoCycle(pos)

Code explanation for code 1:

Convert to duty cycle according to the angle of the signal pulse width, the

formula is: 2.5+angle/180*10, taking the pin resolution of PWM of Pico as

150

Ml
o

www.keyestudio.com

an example, 2716 = 65535, when converted to 0 degree, the duty cycle
value is 65535 * 2.5% = 1638.375, when the angle is 180 degrees, its duty
cycle value is 65535 * 12.5% = 8191.875, these two values will be related to
the program, considering the error and rotation angle, | will set the duty

cycle at 1000 and 9000 to make servo rotate by 0~180 degrees.

Code explanation for code 2:

1. convert(x, i m, i M, o m, o M): Xis the value we will map.

i_m, i_Mis the lower limit and upper limit of the current value ; 0 m,0 Mis
the lower limit and upper limit of the object range.

For instance, convert(degree, 0, 180, 1000, 9000)

Rotation angle degree is in the range of 0° and 180°. The duty cycle we will

map is in the range of 1000 and 9000

Test Result 1:

Upload the code, the servo will rotate 0°, 90° and 180°.

Test Result 2:
Upload the code, the servo will rotate from 0° to 180° and move 1° for

each 10ms.

151

£

www.keyestudio.com

Project 20: Ultrasonic Sensor

Overview

In this kit, there is a keyes HC-SR04 ultrasonic sensor, which can detect
obstacles in front and the detailed distance between the sensor and the
obstacle. Its principle is the same as that of bat flying. It can emit the
ultrasonic signals that cannot be heard by humans. When these signals hit
an obstacle and come back immediately. The distance between the sensor
and the obstacle can be calculated by the time gap of emitting signals and
receiving signals.

In the experiment, we use the sensor to detect the distance between the

152

Ml
o

www.keyestudio.com

sensor and the obstacle, and print the test result.

Ultrasonic detector module can provide 2cm-450cm non-contact sensing
distance, and its ranging accuracy is up to 3mm, very good to meet the
normal requirements. The module includes an ultrasonic transmitter and

receiver as well as the corresponding control circuit.

Working Principle

The most common ultrasonic ranging method is the echo detection. As
shown below; when the ultrasonic emitter emits the ultrasonic waves
towards certain direction, the counter will count. The ultrasonic waves
travel and reflect back once encountering the obstacle. Then the counter

will stop counting when the receiver receives the ultrasonic waves coming

back.

The ultrasonic wave is also sound wave, and its speed of sound V is related
to temperature. Generally, it travels 340m/s in the air. According to time t,
we can calculate the distance s from the emitting spot to the obstacle.
s=340t/2.

The HC-SR04 ultrasonic ranging module can provide a non-contact

distance sensing function of 2cm-400cm, and the ranging accuracy can

153

Ml
o

www.keyestudio.com

reach as high as 3mm; the module includes an ultrasonic transmitter,

receiver and control circuit. Basic working principle:

1. First pull down the TRIG, and then trigger it with at least 10us high level
signal;

2. After triggering, the module will automatically transmit eight 40KHZ
square waves, and automatically detect whether there is a signal to return.
3. If there is a signal returned back, through the ECHO to output a high
level, the duration time of high level is actually the time from emission to
reception of ultrasonic.

Test distance = high level duration * 340m/s * 0.5.

EerSEIon Emitting pin

circuit

MCU Obstacle

Receiving
. circuit i~ e >'

Receiving pin

Components

154

£

www.keyestudio.com

Raspberry
Raspberry Pi
Pi Pico
Pico Shield*1
Board*1

keyestudio
SRO1T
Ultrasonic

Sensor*1

4P Dupont
Wire*1

Micro USB
Cable*1

Wiring Diagram

Test Code'"’

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 20

* Ultrasonic

* http://www.keyestudio.com

from machine import Pin

fritzing

155

Ml
o

www.keyestudio.com

import utime

ultrasonic ranging, unit: cm

def getDistance(trigger, echo):
produce the square wave of 10us
triggerlow() #give a short low level and ensure a high pulse:
utime.sleep us(2)
trigger.high()
utime.sleep us(10)#pull up the high levels, wait for 10ms and set to
low level

trigger.low()

while echo.value() == 0: #build a while loop to detect if the pin is 0,
record the current time
start = utime.ticks us()
while echo.value() == 1: #build a while loop to detect if the pinis 1,
record the current time
end = utime.ticks us()
d = (end - start) * 0.0343 / 2 # travelling time x speed of
sound(343.2 m/s, 0.0343 for each ms), the total distance is divided by
1

returnd

156

Ml
o

www.keyestudio.com

set pins
trigger = Pin(14, Pin.OUT)
echo = Pin(13, Pin.IN)
main program
while True:
distance = getDistance(trigger, echo)
print("The distance is : {:.2f} cm".format(distance))

utime.sleep(0.1)

Test Result

Upload the code. The distance between the ultrasonic sensor and the
obstacle is shown on Shell, as shown below;
The maximum detection distance of the HC-SR04 ultrasonic sensor is 3-4m,

the minimum detection distance is 2cm.

157

pv4
o

www.keyestudio.com

Shell 3£

e aisLance 41s 12 .70 Gl -
The distance is : 12.49
The distance is 11.51
The distance is : 11.44
The distance is 8
The distance is a
The distance is a
The distance is L3}
The distance is 5
The distance is : 4.56 cm
4
c
o
4

9888844

The distance is
The distance is
The distance is
The distance is

.17 cm

158

£

www.keyestudio.com

Project 21: IR Receiver Module

Overview

There is no doubt that infrared remote control is ubiquitous in daily life. It
is used to control various household appliances, such as TVs, stereos, video
recorders and satellite signal receivers. Infrared remote control is
composed of infrared transmitting and infrared receiving systems, that is,
an infrared remote control and infrared receiving module and a single-chip

microcomputer capable of decoding.

In this experiment, we need to know how to use the infrared receiving

sensor. The infrared receiving sensor mainly uses the VS1838B infrared

159

Ml
o

www.keyestudio.com

receiving sensor element. It integrates receiving, amplifying, and
demodulating. The internal IC has already completed the demodulation,
and the output is a digital signal. It can receive 38KHz modulated remote
control signal. In the experiment, we use the IR receiver to receive the
infrared signal emitted by the external infrared transmitting device, and

display the received signal in the shell.

Working Principle

7133
E2
L R3 m O 7
L IX 47K
“~RED-0603 S A Rl
o ‘ | 22R
S 1l Y
—_- TR
GND =T 100nf
GND

The main part of the IR remote control system is modulation, transmission
and reception. The modulated carrier frequency is generally between
30khz and 60khz, and most of them use a square wave of 38kHz and a duty
ratio of 1/3. A 4.7K pull-up resistor R3 is added to the signal end of the

infrared receiver.

160

£

www.keyestudio.com

Initial signals

38K Waves Jm_” ”I ”l ”l“” ”l ”l |
Signals after “ “l ||| ””l” ”l ||| |
modulation

Components

= = |

Raspberr | Raspberry
y Pi Pico Pi Pico
Board*1 | Shield*1

Keyestu
dio DIY
IR
Receiver

*1

3P
Dupont
Wire*1

Micro
USB
Cable*1

Remote
Control*

1

161

Ml
o

www.keyestudio.com

Wiring Diagram

{(C

19A18291 1]

SWCLK
GND
WDID l 3

Power_OUT
RESET,

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 21
* IR Receiver
* http://www.keyestudio.com
import utime

from machine import Pin

ird = Pin(16,Pin.IN)

act {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

162

Ml
o

www.keyestudio.com

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":
"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

T "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":
"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":
"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up":
"LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok":
"LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

N "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#":
"LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read ircode(ird):
wait = 1
complete = 0
seq0 =[]
seql1 =[]

163

Ml
o

www.keyestudio.com

while wait == 1:
if ird.value() == 0:
wait = 0
while wait == 0 and complete == 0:
start = utime.ticks us()
while ird.value() == 0:
ms1 = utime.ticks us()
diff = utime.ticks diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete == 0:
ms2 = utime.ticks us()
diff = utime.ticks diff(ms2,ms1)
if diff > 10000:
complete = 1

seq1.append(diff)

code = ""
for val in seq1:
if val < 2000:
if val < 700:

code += "L"

164

Ml
o

www.keyestudio.com

else:
code +="H"
print(code)
command = ""
for k,v in act.items():
if code == v:

command = k

if command == "":

command = code

return command
while True:
command = read ircode(ird)

print(command)

utime.sleep(0.5)

Code Explanation

read ircode(ird) corresponds to the key symbols

165

Ml
o

www.keyestudio.com

Test Result

Get an IR remote control and pull out the insolation chip. Point at the IR

receiver and press keys on the IR remote control. Then the LED on the IR

receiver will flash, as shown below;

1 Shell 3¢ |
[»»>

Left

Ok
LLLLLHHHHHHHHLHHLLLHLHLLHHHLH
Right

Down

1

LLLHHLLHHH

2

3

1 -

166

Ml
o

www.keyestudio.com

Project 22: DS1307 Clock Module

Overview

The DS1307 serial real-time clock (RTC) is a low-power, full
binary-coded decimal (BCD) clock/calendar plus 56 bytes of NV SRAM.
Address and data are transferred serially through an 12C, bidirectional

bus.

167

Ml
o

www.keyestudio.com

The clock/calendar provides seconds, minutes, hours, day, date, month,

and year information. The end of the

month date

is automatically

adjusted for months with fewer than 31 days, including corrections for leap

year. The clock operates in either the 24-hour or 12-hour format with

AM/PM indicator. The DS1307 has a built-in power-sense circuit that

detects power failures and automatically switches to the backup supply.

Timekeeping operation continues while the part operates from the backup

supply.

Working Principle

GND

32.768kHz I]
Y1 kv
U% M=~
4 i =
3.3V - X1 VO T
4 x2 saw S0
GND SDA
BAT1 | DS1307S08

168

Ml
o

www.keyestudio.com

Detailed address and data:

Serial real-time clock records year, month, day, hour, minute, second and
week; AM and PM indicate morning and afternoon respectively; 56 bytes of
NVRAM store data; 2-wire serial port; programmable square wave output;
power failure detection and automatic switching circuit; battery current is

less than 500nA.

Pins description: X1, 32.768kHz crystal terminal ;
VBAT:X2: +3V input;

SDA: serial data;

SCL: serial clock;

SQW/OUT: square waves/output drivers

ADDRESS | BIT7 | BIT6 | BITS | BIT4 | BIT3 | BIT2 | BIT1 | BITO | FUNCTION | RANGE
00h CH 10 Seconds Seconds Seconds 00-59
01h 0 10 Minutes Minutes Minutes 00-59

10
12 1-12
02n 0 tour |10 Hours Hours | +AM/PM
24 P/ Hour 00-23
AM
03h 0 0 0 0 0| DAY Day 01-07
04h 0 0 10 Date Date Date 01-31
10
05h 0 0 0 e Month Month 01-12
06h 10 Year Year Year 00-99
07h ouT | 0o | o | sawe 0 [o [RSt [RSO Control =
RAM
08h-3Fh ke 00h—FFh

169

Ml
o

www.keyestudio.com

Components

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico Shield*1

Keyestudio
DS1307
Clock
Module*1

4P
Dupont
Wire*1

Micro USB
Cable*1

Wiring Diagram

S

Power_OUT
RESET,

fritzing

VUSB is 5V, hence the power we use can be connected to VUSB

170

Ml
o

www.keyestudio.com

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 22

* DS1307 Real Time Clock

* http://www.keyestudio.com

from machine import 12C, Pin
from urtc import DS1307

import utime

i2c = 12C(1,scl = Pin(15),sda = Pin(14),freq = 400000)
rtc = DS1307(i2c)

year = int(input("Year : "))

month = int(input("month (Jan --> 1, Dec --> 12): "))

date = int(input("date : "))

day = int(input("day (1 --> monday, 2 --> Tuesday ... 0 --> Sunday): "))
hour = int(input("hour (24 Hour format): "))

minute = int(input("minute : "))

second = int(input("second : "))

171

Ml
o

www.keyestudio.com

now = (year,month,date,day,hour,minute,second,0)

rtc.datetime(now)

#(year,month,date,day,hour,minute,second,p1) = rtc.datetime()
while True:

DateTimeTuple = rtc.datetime()

print(DateTimeTuple[0], end = '-')

print(DateTimeTuple[1], end = '-')

print(DateTimeTuple[2], end =" ')

print(DateTimeTuple[4], end = ")

print(DateTimeTuple[5], end = ")

print(DateTimeTuple[6], end ="' week:’)

print(DateTimeTuple[3])

utime.sleep(1)

Code Explanation

In the experiment, we need to import the urtc module.

172

Ml
o

www.keyestudio.com

Recpbermy BiBico = hour = int(input("hour (24 Hour format): "))
- minute = int(input("minute : "))
b1 lib S o A p RN
& ht16k33_matrix.py 4 '
@ matrix_fonts.py Shell 32

@ rotary.py Backend terminated or disconnected. Use 'Stop/Restart' to restart.

& rota ry_irg_rp2.py

>rr

rtc.datetime(), when running the program, we set “input
please” program, run the code, we need to input time and date, after

inputting, the data will be displayed each second.

DateTimeTuple[0] save years
DateTimeTuple[1] save months
DateTimeTuple[2] save days
DateTimeTuple[3] Save weeks
Rtc.GetDateTime().Month() return months
DateTimeTuple[4] save hours
DateTimeTuple[5] save minutes

DateTimeTuple[6] save seconds

Test Result

Upload the test code, we can see the displayed year, month, day, hour,

minute, second and week on the shell, as shown below;

173

Ml
o

www.keyestudio.com

Shell 2 |

date : 11

day (1 --> monday ,

hour (24 Hour format):

minute : 56
second : 50
2021-11-11
2021-11-11
2021-11-11
2021-11-11
2021-11-11
2021-11-11
2021-11-11
2021-11-11
2021-11-11

156:50

2

--> Tuesday ...

18

week:
week:
week:
week:
week:
week:
week:
week:
week:

[S Y

0 --> Sunday) :

4

174

Ml
o

www.keyestudio.com

Project 23: TM1650 4-Digit Tube Display

Overview

This module is mainly composed of a 0.36 inch red common anode 4-digit
digital tube, and its driver chip is TM1650. When using it, we only need two
signal lines to make the single-chip microcomputer control a 4-bitdigit
tube, which greatly saves the IO port resources of the control board.

TM1650 is a special circuit for LED (light emitting diode display) drive
control. It integrates MCU input and output control digital interface, data
latch, LED drivers, keyboard scanning, brightness adjustment and other

circuits.

TM1650 has stable performance, reliable quality and strong

175

Ml
o

www.keyestudio.com

anti-interference ability.

It can be applied to the application of long-term continuous working for 24

hours.

TM1650 uses 2-wire serial transmission protocol for communication (note

that this data transmission protocol is not a standard 12C protocol). The

chip can drive the digital tube and save MCU pin resources through two

pins and MCU communication.

Working Principle

TM1650 adopts IIC treaty and SDA and SCL wire

Data command setting is 0x48. This means that lighting up the tube

display not perform its button scanning function.

"

Eh}f L CLK GKD
— DAT FKla
GND» || Doz] O EKE

T_] 5
THIGE S o e
—Bre— DiGi CKB
— DIGd veC
- AKI BED

TMI1650

DiGl DPREP

‘.T‘r}—"——' 3
4
L
16 SEGS ONP
5 SEGT
14 SEGG
7T SECR
17 SEGA
11_SEG3
10 = i
s SEGT 1 ivee
1
Ulfll:l:'-[Dﬂﬂ.f
GRD

LEDM

SEGS E DIG1 12 DIG1
l:‘] it
SEG42 D % 11 SEG1
SEGS o, g - 10SEGS
SEG34 s P 9 DIG2
SEGTS | 2 pad & DIG3
7 SEG2

4-digit

commeon cathode

176

Ml
o

www.keyestudio.com

Data command setting: 0x48 means that we light up the digital tube,

instead of enable the function of key scanning

B7 | B& | B5 | B4 | B3 | B2 | B1 | BO | Function Description
X0 (V|0 b A Eight-level brightness
® |G 0%y) ® | ¥ One-level brightness
X0 |11 0 L Two-level brightness
X0 4|1 x| % Three-level brightness
— — Brightness setting

x(1 |0 |0 X | X Four-level brightness
* (1 |0 . 1 x| X Five-level brightness
X1 |1 _ 4] | X | % Six-level brightness
X1 {1 X | % Seven-level brightness
> . X | X 7/8 segment 8-segment display way
w0 w | ow display control bit 7-segment display way
b oo | |0 . Off display

- T CON/OFF display bit
4 ® [x| On display

Command display setting:

bit[6:4]: set the brightness of tube display, and 000 is brightest

bit[3]: set to show decimal points

bit[0]: start the display of the tube display

Components

Qe

177

Ml
o

www.keyestudio.com

Keyestudio
Micro
Raspberry Pi | Raspberry Pi TM1650 4P Dupont
USB
Pico Board*1 | Pico Shield*1 4-Digit Tube Wire*1
Cable*1
Display*1

Wiring Diagram

H
v}
Q
Q.
o
=
o
®

fritzing
Test Code'"’
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 23
* TM1650 Four digital tube
* http://www.keyestudio.com
from machine import Pin

import time

178

Ml
o

www.keyestudio.com

definitions for TM1650
ADDR DIS = 0x48 #mode command
ADDR KEY = 0x49 #read key value command

definitions for brightness
BRIGHT DARKEST =0
BRIGHT TYPICAL =2
BRIGHTEST =7

on =1

off =0

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢,0x6e]

DIG = [0x6e,0x6c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin = 15
dioPin = 14

clk = machine.Pin(clkPin, machine.Pin.OUT)

179

Ml
o

www.keyestudio.com

dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand = 0

def writeByte(wr data):
global clk,dio
foriin range(8):
if(wr data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
time.sleep(0.0001)
clk.value(1)
time.sleep(0.0001)
clk.value(0)
wr data <<= 1

return

def start():
global clk,dio

dio.value(1)

180

Ml
o

www.keyestudio.com

clk.value(1)
time.sleep(0.0001)
dio.value(0)

return

def ack():
global clk,dio
dy=0
clk.value(0)
time.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):
time.sleep(0.0001)
dy +=1
if(dy>5000):
break
clk.value(1)
time.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)

return

181

Ml
o

www.keyestudio.com

def stop():
global clk,dio
dio.value(0)
clk.value(1)
time.sleep(0.0001)
dio.value(1)

return

def displayBit(bit, num):
global ADDR DIS
if(num > 9 and bit > 4):

return

start()
writeByte(ADDR _DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
if(DOT[bit-1] == 1):

182

Ml
o

www.keyestudio.com

writeByte(NUM[num] | 0x80)
else:

writeByte(NUM[num])
ack()
stop()

return

def clearBit(bit):

if(bit > 4):

return
start()
writeByte(ADDR _DIS)
ack()
writeByte(DisplayCommand)
ack()
stop()
start()
writeByte(DIG[bit-1])
ack()
writeByte(0x00)
ack()
stop()

183

Ml
o

www.keyestudio.com

return

def setBrightness(b = BRIGHT TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f) +(b< <4)

return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)

return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff

return

def displayDot(bit, OnOff):
if(bit > 4):
return

if(OnOff == 1):

184

Ml
o

www.keyestudio.com

DOT[bit-1] = 1;
else:
DOT[bit-1] = O;

return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for in range(4):
clearBit()

return

def ShowNum(num): #0~9999
displayBit(1,num%10)
if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)
if(num > 9 and num < 100):
displayBit(2,num//10%10)

clearBit(3)

185

Ml
o

www.keyestudio.com

clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

InitDigitalTube()

while True:
#displayDot(1,0n) # on or off, DigitalTube.Display(bit,number);
bit=1---4 number=0---9
foriin range(0,999):
ShowNum(i)

time.sleep(0.01)

Code ExplanationclkPin = 15, dioPin = 14
Set pins, that is, CLK is connected to GP15, DIO is linked with GOP14 and

186

Ml
o

www.keyestudio.com

we can set any pins.

displayBit(bit, num): show bit(1~4) and display number & 7=~ £ =

num(0~9)

clearBit(bit) clear up bit(1~4) display

setBrightness(): brightness setting

displayOnOFF() 0 means OFF, 1 stands for ON
displayDot(bit, OnOff): show bit, 0is OFF and 1 is ON.

ShowNum(num): show integer num, in the range of 0~9999

Test Result

Run the test code, wire up and power on. 4-digit tube display will show

numbers from 0 to 99999 then from 9999 to O

187

£

www.keyestudio.com

Project 24: HT16K33 8X8 Dot Matrix Module

188

Ml
o

www.keyestudio.com

Overview

What is the dot matrix display?

The 8X8 dot matrix is composed of 64 light-emitting diodes, and each
light-emitting diode is placed at the intersection of the row line and the
column line. When the corresponding row is set to 1 level, and a certain

column is set to 0 level, the corresponding diode will light up.

Working Principle

As the schematic diagram shown, to light up the LED at the first row and column,
we only need to set C1 to high level and R1 to low level. To turn on LEDs at the
first row, we set R1 to low level and C1-C8 to high level.

16 IO ports are needed, which will highly waste the MCU resources.

Therefore, we designed this module, using the HT16K33 chip to drive an 8*8 dot
matrix, which greatly saves the resources of the single-chip microcomputer.
There are three DIP switches on the module, all of which are set to 12C
communication address. The setting method is shown below.

A0, Aland A2 are grounded, that is, the address is 0x70

A A A A A A A A A
O(M)[1(2)123)|0(1)1(2)[23)]|0(1)[1(2)]2(3)

0 0 0 1 0 0 0 1 0

189

Ml
o

www.keyestudio.com

(OF| (OF| (OF| (O| (OF| (OF| (OF| (O| (OF

/B (B [N B B [F) [N) |F)

OX70 OX71 OX72

O(M)[1(2)123)|0(1)11(2)[23)|0(1)[1(2)]2(3)

(O] (O (OF| (OF| (OF] (O] (O] (OF] (O

N) Ny |F) [P |F) [N) [N) |F) |N)

OX73 OX74 OX75

O(M|1(2)123)(0(1)|1(2)|2(3)

(OF| (O (O] (O (O] (O

F) N) [N) |N) [N) |N)

OX76 OX77

190

Ml
o

www.keyestudio.com

Components

Keyestudio
Raspberry 4P Micro
Raspberry Pi | HT16K33_
Pi Pico Dupont USB
Pico Shield*1 8X8 Dot
Board*1 Wire*1 | Cable*1
Matrix*1

Wiring Diagram

fritzing

Test Code'"’
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 24

191

Ml
o

www.keyestudio.com

* HT16K33 8*8 dot matrix
* http://www.keyestudio.com
import machine
import time
import json
import matrix_fonts
from ht16k33 matrix import ht16k33 matrix

Tool To Make Sprites https://gurgleapps.com/tools/matrix

#i2c config
clock pin = 21
data pin = 20
bus =0

i2c_addr left = 0x70

use i2c = True

def scan for devices():

i2¢c =
machine.l2C(bus,sda=machine.Pin(data_pin),scl=machine.Pin(clock pi
n))

devices = i2c.scan()

if devices:

192

Ml
o

www.keyestudio.com

for d in devices:
print(hex(d))
else:

print('no i2c devices')

if use i2c:
scan for devices()

left eye = ht16k33 matrix(data pin, clock pin, bus, i2c addr left)

def show char(left):
if use i2c:

left eye.show char(left)

def scroll message(font,message="hello',delay=0.05):

left message =' ' + message

right message = message + '

length=len(right message)

char range=range(length-1)

for char pos in char range:
right left char=font[right message[char pos]]
right_right char=font[right message[char pos+1]]

left left char=font[left message[char pos]]

193

Ml
o

www.keyestudio.com

left right char=font[left message[char pos+1]]
for shift in range(8):
left bytes=[0,0,0,0,0,0,0,0]
right _bytes=[0,0,0,0,0,0,0,0]
for col in range(8):
left bytes[col]=left bytes[col]|left left char[col] < <shift
left bytes[col]=left bytes[col]|left right char[col]> >8-shift;

right bytes[col]=right bytes[col]|right left char[col] < <shift

right_bytes[col]=right bytes[col]|right right char[col] > >8-shift;
if use i2c:
left eye.show char(left bytes)

time.sleep(delay)

while True:
show_char(matrix_fonts.textFont1['A’])
time.sleep(1)
show_char(matrix_fonts.textFont1['B'])
time.sleep(1)
show_char(matrix_fonts.textFont1['C'])

time.sleep(1)

194

Ml
o

www.keyestudio.com

scroll message(matrix fonts.textFont1, ' Hello World ')

Code Explanation

Firstly we need to import the dot matrix module. matrix fonts is the

module file for all kinds of characters.

Raspberry Pi Pico 2 use_i2c = True
bl b def scan_for_devices():
& ht16k33_matrix.py i2c¢ = machine.I2C(bus,sda=machine.Pin(data_pin),scl=mach
& matrix_fonts.py 4
& rotary.py | Shell 3t
@ rotary_irg_rp2.py serial.serialutil.SeriallimecutException: Write timeout
& urtcpy
ey
show char() is a displayed character, for instance,

show char(matrix fonts.textFont1['A']) represents displaying A.
scroll message(font,message="hello’,delay=0.05): scroll to display, 0.05

is the speed, massage means displayed character strings, font is a model

file.

Test Result

Wire up and upload the test code. Then the dot matrix display will show
“A" , "B" and "“C" then "Hello World" .

195

£

www.keyestudio.com

5. Comprehensive Experiments
The previous projects are related to single sensor or module. In the
following part, we will combine various sensors and modules to create

some comprehensive experiments to perform special functions.

Project 25: Breathing LED

196

Ml
o

www.keyestudio.com

Overview

A “breathing LED" is a phenomenon where an LED's brightness smoothly

changes from dark to bright and back to dark, continuing to do so and

giving the illusion of an LED “breathing.” This phenomenon is similar to a

lung breathing in and out. So how to control LED’ s brightness? We need

to take advantage of PWM.

Components

o e
Raspberry Pi Keyestudio
Raspberry Pi 3P Dupont Micro USB
Pico White LED
Pico Shield*1 Wire*1 Cable*1
Board*1 Module*1

Wiring Diagram

197

Ml
o

www.keyestudio.com

Power_OUT
RESET,

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 25
* Breath
* http://www.keyestudio.com
import machine

import time

pwm = machine.PWM(machine.Pin(15))
pwm.freq(1000)

duty =0

198

Ml
o

www.keyestudio.com

direction = 1
while True:
duty += direction
if duty > 255:
duty = 255
direction = -1
elif duty < O:
duty =0
direction = 1
pwm.duty u16(duty * duty)
time.sleep(0.01)

Code Explanation

The bigger the duty cycle is set, the brighter the LED. The maximum is
65535. When duty increases from 0 to 255, up 1 and delay 10ms for each
time, then LED will gradually get bright. When PWM is 255*255, i decreases
from 255 to 0, down by1 and delay 10ms for each time, then the LED will
get dimmer, like human breathe.

Also, we can change the time of getting dimmer or brighter in the code.

Another way is changing step length like direction = -2 or direction = 2.

199

£

www.keyestudio.com

Test Result

Run the test code, the LED on the module gradually gets dimmer then

brighter, cyclically, like human breathe

200

Ml
o

www.keyestudio.com

Project 26: Button-controlled LED

Overview
In this lesson, we will make an extension experiment with a button and an
LED. When the button is pressed and low levels are output, the LED will

light up; when the button is released, the LED will go off. Then we can

control a module with another module.

201

Ml
o

www.keyestudio.com

Components

—

Keyestudio
Raspberry | Raspberry | Keyestudio 3P Micro
DIY
Pi Pico Pi Pico White LED Dupont USB
Button
Board*1 Shield*1 Module*1 Wire*2 | Cable*1
Module*1

Wiring Diagram

0000000000000

r

A4

BUTTON

fritzing

202

Ml
o

www.keyestudio.com

Test Code
* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 26
* button control LED
* http://www.keyestudio.com
from machine import Pin

import time

button = Pin(16, Pin.IN)
LED = Pin(15, Pin.OUT)

touch = False

def toggle handle(pin):
global touch

touch = not touch

button.irq(trigger = Pin.IRQ FALLING, handler = toggle handle)

while True:

LED.value(touch)

203

£

www.keyestudio.com

time.sleep(0.01)

Code Explanation

Configure pins mode according to 10 ports connected to sensors and

modules.

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle handle)
The trigger means that high levels turn into low levels and the trigger

interrupt then use the interrupt function toggle handle.

Test Result

Upload the code, when the button is pressed, the LED will light up; when

pressed again, the LED will go off

204

£

www.keyestudio.com

Project 27: Alarm Experiment

Overview
In the previous experiment, we control an output module though an input

module. In this lesson, we will make an experiment that the active buzzer

will emit sounds once an obstacle appears.

205

Ml
o

www.keyestudio.com

Components

Raspberry
Pi Pico
Board*1

Raspberry
Pi Pico
Shield*1

Keyestudio
Obstacle
Avoidance

Sensor*1

Keyestudi
o Active

Buzzer*1

3P
Dupont
Wire*2

Micro
USB
Cable*1

Wiring Diagram

REMOVE
SEAL
AFTER
WASHING

-
i

Obstacle avoidance

Test Code

*

Power_OUT

5V GND
|

|

|m

fritzing

206

Ml
o

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 27

* Avoiding alarm

* http://www.keyestudio.com
from machine import Pin

import time

buzzer = Pin(16, Pin.OUT)

sensor = Pin(15, Pin.IN)

while True:
buzzer.value(not(sensor.value()))

time.sleep(0.01)

Code Explanation

When detecting the obstacle, sensor.value() will return a low level signal.

The pin GP16 of the buzzer will output high levels and the buzzer will emit

sounds.

207

Ml
o

www.keyestudio.com

Test Result

Upload the test code, if the obstacle is detected, the external active buzzer

will chime; if not, it won’ t beep

208

pv4
o

www.keyestudio.com

Project 28: PIR Motion Sensor

Introduction

In this experiment, we will control an active buzzer and an on-board LED

through a PIR motion sensor.

Components

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico Shield*1

Keyestudi
o PIR
Motion

Sensor*1

Keyestud
io Active

Buzzer*1

3P Dupont
Wire*2

MicroUSB
Cable*1

209

Ml
o

www.keyestudio.com

Connection Diagram

Power_OUT
RESET,

PIR motion

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 28
* PIR motion sensor
* http://www.keyestudio.com
import machine

import utime

sensor _pir = machine.Pin(15, machine.Pin.IN,

machine.Pin.PULL DOWN)

210

Ml
o

www.keyestudio.com

led = machine.Pin(25, machine.Pin.OUT)

buzzer = machine.Pin(16, machine.Pin.OUT)

def pir_handler(pin):
utime.sleep ms(100)
if pin.value():
print("Warning! Intrusion detected! ")
buzzer.value(1)
for i in range(20):
led.toggle()

utime.sleep ms(100)

sensor _pir.irq(trigger=machine.Pin.IRQ RISING, handler=pir _handler)

while True:
led.toggle()
buzzer.value(0)

utime.sleep(2)

Code Explanation

211

Ml
o

www.keyestudio.com

We use sensor _pir.irq(trigger=machine.Pin.IRQ_RISING,
handler=pir handler) to trigger on a rising edge (when it goes low to
high). pir_handler is an interrupt handler used to control the buzzer and

the LED.

Test Result

After running the program, the LED will blink slowly and the detector starts
to work. IRQ_RISING is used when the interrupt triggers. When the motion
is detected, the level on the PIR output will change from 0 to 1. Then the
pir_handler() function is called, the buzzer generates sounds and the LED

flashes quickly.

212

Ml
o

www.keyestudio.com

Speaker Module

Project 29

213

Ml
o

www.keyestudio.com

Introduction

We learned about controlling the speaker module to make sounds, play
beats and adjust its volume. In fact, each song is a combination of specific
beats and tones (frequencies). In this experiment, we use this speaker
module to play a song.

The frequency of each tone is shown below.

Bass:

Key

Note

A 221 248 278 294 330 371 416

B 248 278 294 330 371 416 467

C 131 147 165 175 196 221 248

D 147 165 175 196 221 248 278

E 165 175 196 221 248 278 312

F 175 196 221 234 262 294 330

214

£

www.keyestudio.com

G 196 221 234 262

Midrange :

Key 1 2 3 4

Note

A 441 495 556 589

B 495 556 624 661

C 262 294 330 350

D 294 330 350 393

E 330 350 393 441
F 350 393 441 495
G 393 441 495 556

294

661

724

393

441

495

556

624

330

724

833

441

495

556

624

661

371

833

935

495

556

624

661

724

215

£

www.keyestudio.com

Treble:

ey 1#* o# 3 2* c# 6" 7#
Note

A 882 990 1112 1178 1322 1484 1665
B 990 1112 1178 1322 1484 1665 1869
C 525 589 661 700 786 882 990
D 589 661 700 786 882 990 1112
E 661 700 786 882 990 1112 1248
F 700 786 882 935 1049 1178 1322
G 786 882 990 1049 1178 1322 1484

Beats are the time delay for each note. The larger the number, the longer
the delay time. A note without a line in the spectrum is a beat, with a delay
of 1s. while a beat with an underline is 1/2 of a beat without a line, with a
delay of 0.5s, and a beat with two underlines is 1/4 of a beat without a line,
with a delay of 0.25s. The 1/8 of a beat is with a delay of 0.125s.

We will take Happy Birthday Song as an example.

216

Ml
o

www.keyestudio.com

Components

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico Shield*1

Keyestudio
Speaker
Module*1

3P Dupont
Wire*1

MicroUSB
Cable*1

Connection Diagram

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 29

* Speaker module

Power_QUT

RESET,

fritzing

217

£

www.keyestudio.com

* http://www.keyestudio.com
from machine import Pin, PWM
from utime import sleep
buzzer = PWM(Pin(15))

tones = {
"D1": 262,
"D2": 293,
"D3": 329,
"D4": 349,
"D5": 392,
"D6": 440,
"D7": 494,
"M1": 523,
"M2": 586,
"M3": 658,
"M4": 697,
"M5": 783,
"Me6": 879,
"M7": 987,
"H1": 1045,
"H2": 1171,
"H3": 1316,
"H4": 1393,
"H5": 1563,
"H6": 1755,
"H7": 1971
}

song = ["D5","D5","D6","D5","M1","D7",
"D5","D5","D6","D5","M2","M1",
"D5","D5","M5","M3","M1","D7","D6",
"Ma","ma","m3","mM1","mM2","M1"

durt =[0.25, 0.25, 0.5, 0.5, 0.5, 1,
0.25,0.25,0.5,0.5,0.5, 1,
0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5,
0.25,0.25,0.5,0.5,0.5,1

def playtone(frequency):
buzzer.duty_u16(1000)

218

£

www.keyestudio.com

buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

def playsong(mysong):
foriin range(len(mysong)):
playtone(tones[mysongli]l)
sleep(durt[i])
bequiet()
playsong(song)

Code Explanation

We first list all the frequencies in D, then we list the frequencies and the
beats according to the numbered musical notation. We use a beat of

500ms, which can be adjusted by yourself.

Test Result
Connect the components according to the connection diagram and run the

test code, the speaker module will play a song.

219

pv4
o

www.keyestudio.com

Project 30: Rotary Encoder

Introduction

In this lesson, we will control the LED on the RGB module to show different
colors through a rotary encoder.

When designing the code, we need to divide the obtained values by 3 to
get the remainders. The remainder is 0 and the LED will become red. The
remainder is 1, the LED will become green. The remainder is 2, the LED will
turn blue.

Components

220

Ml
o

www.keyestudio.com

@

B

-
®::
B o

RGB LED

Rotary encoder 4

Raspberry Pi

Raspberry Pi Pico

Keyestudio

Common

Keyestudio

Rotary Encoder

Pico Board*1 Shield*1 Cathode RGB
Module*1
Module*1
ro”* | =0 S8
5P Dupont Micro USB
4P Dupont Wire*1
Wire*1 Cable*1

Connection Diagram

RGB LED

vec

GND
Rotary encoder .

Test Code

221

£

www.keyestudio.com

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 30
* Rotary encoder
* http://www.keyestudio.com
import time
from rotary_irq_rp2 import RotarylRQ
from machine import Pin, PWM

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))
pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ul6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

SW=Pin(20,Pin.IN,Pin.PULL_UP)
r = RotarylRQ(pin_num_clk=18,
pin_num_dt=19,
min_val=0,
reverse=False,
range_mode=RotarylIRQ.RANGE_UNBOUNDED)

while True:

val = r.value()

print(val%3)

if val%3 == 0:
light(65535, 0, 0)

elif val%3 == 1:
light(0, 65535, 0)

elif val%3 == 2:
light(0, 0, 65535)

time.sleep(0.1)

Code Explanation

222

£

www.keyestudio.com

Any number divided by 3, the remainder obtained is 0, or 1, or 2, we can
use these three values to determine the status of the LED. Set the pins of
reminders to GP9 (red), GP10 (green) and GP11 (blue), respectively. Refer to

the previous method to control the LED to show the corresponding colors.

Test Result
Wire up the components, run the code and look at the Shell. Turn the

encoder to display the reminders, then the LED will show different colors.

223

pv4
o

www.keyestudio.com

Project 31: Rotary Potentiometer

Introduction

In the previous courses, we did experiments of breathing light and
controlling LED with button. In this course, we do these two experiments
by controlling the brightness of LED through an adjustable potentiometer.
The brightness of LED is controlled by PWM values, and the range of
analog values is the same as the PWM" s, from 0 to 65535.

After the code is set successfully, we can control the brightness of the LED

on the module by rotating the potentiometer.

Components

224

Ml
o

www.keyestudio.com

Raspberr
y Pi Pico
Board*1

Raspberry
Pi Pico
Shield*1

Keyestu
dio
White
LED
Module
*1

Keyestud
io Rotary
Potentio

meter*1

3P
Dupont
Wire*2

MicroUS
B
Cable*1

Connection Diagram

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 31

* Rotary potentiometer

* http://www.keyestudio.com

import machine

import utime

1ajowonuajod

225

£

www.keyestudio.com

potentiometer = machine.ADC(26)

pwm = machine.PWM(machine.Pin(15))
pwm.freq(1000)

while True:
pot_value = potentiometer.read_u16()

pwm.duty_ul6(pot_value)
utime.sleep(0.1)

Code Explanation

It is easier to control the brightness of the LED with a potentiometer. In
MicroPython, the ADC values range from 0 to 65535, just assign values

directly, which is simple and convenient.

Test Result

Run the code, turn the potentiometer to adjust the brightness of the LED.

226

Ml
o

www.keyestudio.com

Project 32: Sound Activated Light

- JEale

Introduction

In this lesson, we will make a smart sound activated light using a sound
sensor and an LED module. When we make a sound, the light will
automatically turn on; when there is no sound, the lights will automatically
turn off. How it works? Because the sound-controlled light is equipped with
a sound sensor, and this sensor converts the intensity of external sound
into a corresponding value. Then set a threshold, when the threshold is

exceeded, the light will turn on, and when it is not exceeded, the light will

227

Ml
o

www.keyestudio.com

go out.
Components
Keyestu
dio
Raspberr | Raspberr | Keyestudi 3P MicroUS
White
y Pi Pico | y PiPico | o Sound Dupont B
LED
Board*1 | Shield*1 | Sensor*1 Wire*2 | Cable*1
Module*
1

Connection Diagram

auoydosoiy

©oooQo0oCoO0C0
,

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

228

Ml
o

www.keyestudio.com

* lesson 32

* sound-controlled lights

* http://www.keyestudio.com
import machine
import time

MicroPhone = machine.ADC(26)
led = machine.Pin(15,machine.Pin.OUT)

while True:
value = MicroPhone.read_u16()
print(value)
if value > 5000:
led.value(1)
time.sleep(3)
else:
led.value(0)
time.sleep(0.1)

Code Explanation

In this experiment, we set the threshold to 5000. If it exceeds 5000, the LED

will light up, otherwise it will be turned off.

Test Result

Run the code, the Shell will display analog values. When we make a sound,

the value will increase. If the value exceeds 5000, the LED will light up.

229

pv4
o

www.keyestudio.com

Shell 3¢ |

Tiu
720
384
0

0
1072
448
0

0
10242

Project 33: RGB Module

Introduction

We learned how to use the 6812 RGB module, we knew that this module
can light up each LED through a pin. In this experiment, we will control the
RGB module to display different colors. (Note: do not look directly at the

LEDs for a long time to avoid damage to our eyes.)

230

Ml
o

www.keyestudio.com

Components

- | S

6812 RGB LED

Raspberry Pi

Pico Board*1

Raspberry Pi Pico

Shield*1

Keyestudio
3P Dupont MicroUSB
6812 RGB
Wire*1 Cable*1
Module*1

Connection Diagram

a371 994 Z189

Test Code

UARTO UART!

v3

-

SWCLK

IGND

Swpio __Iny &
H
a

Power_OUT

RESET,

fritzing

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico

* lesson 33
* RGB Module

* http://www.keyestudio.com

Example using PIO to drive a set of WS2812 LEDs.

import array, time

from machine import Pin

import rp2

231

£

www.keyestudio.com

Configure the number of WS2812 LEDs.
NUM_LEDS =4

PIN_NUM =15

brightness = 0.2

@rp2.asm_pio(sideset_init=rp2.P1I0.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)

def ws2812():
T1=2
T2=5
T3=3
wrap_target()
label("bitloop")

out(x, 1) .side(0) [T3-1]
jmp(not_x, "do_zero") .side(1) [T1-1]
jmp("bitloop") .side(1) [T2-1]
label("do_zero")

nop() .side(0) [T2-1]
wrap()

Create the StateMachine with the ws2812 program, outputting on pin
sm = rp2.StateMachine(0, ws2812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.

sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("1", [0 for _ in range(NUM_LEDS)])

HEHHHH

def pixels_show():
dimmer_ar = array.array("1", [0 for _ in range(NUM_LEDS)])
fori,c in enumerate(ar):
r = int(((c >> 8) & OxFF) * brightness)
g = int(((c >> 16) & OxFF) * brightness)
b = int((c & OxFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b
sm.put(dimmer_ar, 8)
time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

232

£

www.keyestudio.com

def color_chase(color, wait):
foriin range(NUM_LEDS):
pixels_set(i, color)
time.sleep(wait)
pixels_show()
time.sleep(0.2)

def wheel(pos):
Input a value 0 to 255 to get a color value.
The colours are a transitionr-g-b -back tor.
if pos < 0 or pos > 255:
return (0, 0, 0)
if pos < 85:
return (255 - pos * 3, pos * 3, 0)
if pos < 170:
pos -= 85
return (0, 255 - pos * 3, pos * 3)
pos -=170
return (pos * 3, 0, 255 - pos * 3)

def rainbow_cycle(wait):
for j in range(255):
foriin range(NUM_LEDS):
rc_index = (i * 256 // NUM_LEDS) +
pixels_set(i, wheel(rc_index & 255))
pixels_show()
time.sleep(wait)

BLACK = (0, 0, 0)

RED = (255, 0, 0)

YELLOW = (255, 150, 0)

GREEN = (0, 255, 0)

CYAN = (0, 255, 255)

BLUE = (0, 0, 255)

PURPLE = (180, 0, 255)

WHITE = (255, 255, 255)

COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE, WHITE)

print("chases")
for color in COLORS:

color_chase(color, 0.05)

print("rainbow")

233

£

www.keyestudio.com

rainbow_cycle(0)

Code Explanation

color chase(color, wait): “color” is used to control the LEDs to display
corresponding color, “wait” is used to control the time that the LEDs
change to another color.

rainbow cycle(0): to control the LEDs to show different colors repeatedly.

Test Result
Wire up the components and run the code. We will see the LEDs shows

different colors.

234

Ml
o

www.keyestudio.com

Project 34: Ultrasonic Sensor

CGust MEES A e 1557 Distance?2 cm

Introduction

We know that bats use echoes to determine the direction and the location
of their preys. In real life, sonar is used to detect sounds in the water. Since
the attenuation rate of electromagnetic waves in water is very high, it
cannot be used to detect signals, however, the attenuation rate of sound
waves in the water is much smaller, so sound waves are most commonly
used underwater for observation and measurement.In this experiment, we

will use a speaker module, an RGB module and a 4-digit tube display to

235

pv4
o

www.keyestudio.com

make a device for detection through ultrasonic.

Components

keyes brick Keyestudio
Keyestudio
Raspberry Pi Raspberry Pi HC-SR04 Common
Speaker
Pico Board*1 Pico Shield*1 Ultrasonic Cathode RGB
Module*1
Sensor*1 Module*1
Q- | S
Keyestudio
T™M1650 4P Dupont 3P Dupont MicroUSB
4-Digit Tube Wire*3 Wire*1 Cable*1
Display*1

236

Ml
o

www.keyestudio.com

Connection Diagram

4-Digital Tube

Power_OUT
RESET,

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 34
* Ultrasonic Sensor
* http://www.keyestudio.com
from machine import Pin, PWM
import utime

definitions for TM1650
ADDR_DIS =0x48 #mode command
ADDR_KEY = 0x49 #read key value command

definitions for brightness
BRIGHT_DARKEST =0
BRIGHT_TYPICAL = 2
BRIGHTEST =7

on =1
off=0

237

£

www.keyestudio.com

number:0~9

NUM = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f]
DIG = [0x68,0x6a,0x6¢,0x6e]

DIG = [0x6e,0x6¢c,0x6a,0x68]

DOT = [0,0,0,0]

clkPin =15
dioPin =14
clk = machine.Pin(clkPin, machine.Pin.OUT)
dio = machine.Pin(dioPin, machine.Pin.OUT)

DisplayCommand =0

def writeByte(wr_data):
global clk,dio
foriin range(8):
if(wr_data & 0x80 == 0x80):
dio.value(1)
else:
dio.value(0)
clk.value(0)
utime.sleep(0.0001)
clk.value(1)
utime.sleep(0.0001)
clk.value(0)
wr_data<<=1
return

def start():
global clk,dio
dio.value(1)
clk.value(1)
utime.sleep(0.0001)
dio.value(0)
return

def ack():
global clk,dio
dy=0
clk.value(0)
utime.sleep(0.0001)
dio = Pin(dioPin, machine.Pin.IN)
while(dio.value() == 1):

238

£

www.keyestudio.com

utime.sleep(0.0001)

dy+=1

if(dy>5000):

break

clk.value(1)
utime.sleep(0.0001)
clk.value(0)
dio = Pin(dioPin, machine.Pin.OUT)
return

def stop():
global clk,dio
dio.value(0)
clk.value(1)
utime.sleep(0.0001)
dio.value(1)
return

def displayBit(bit, num):

global ADDR_DIS

if(num > 9 and bit > 4):
return

start()

writeByte(ADDR_DIS)

ack()

writeByte(DisplayCommand)

ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

if(DOT[bit-1] == 1):
writeByte(NUM[num] | 0x80)

else:
writeByte(NUM[num])

ack()

stop()
return

def clearBit(bit):
if(bit > 4):
return
start()
writeByte(ADDR_DIS)

239

£

www.keyestudio.com

ack()
writeByte(DisplayCommand)
ack()

stop()

start()

writeByte(DIG[bit-1])

ack()

writeByte(0x00)

ack()

stop()
return

def setBrightness(b = BRIGHT_TYPICAL):
global DisplayCommand,brightness
DisplayCommand = (DisplayCommand & 0x0f)+(b<<4)
return

def setMode(segment = 0):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xf7)+(segment<<3)
return

def displayOnOFF(OnOff = 1):
global DisplayCommand
DisplayCommand = (DisplayCommand & 0xfe)+OnOff
return

def displayDot(bit, OnOff):
if(bit > 4):
return
if(OnOff == 1):
DOT[bit-1] = 1;
else:
DOT[bit-1] = 0;
return

def InitDigitalTube():
setBrightness(2)
setMode(0)
displayOnOFF(1)
for _in range(4):
clearBit(_)
return

240

£

www.keyestudio.com

def ShowNum(num): #0~9999

displayBit(1,num%10)

if(num < 10):
clearBit(2)
clearBit(3)
clearBit(4)

if(num > 9 and num < 100):
displayBit(2,num//10%10)
clearBit(3)
clearBit(4)

if(num > 99 and num < 1000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
clearBit(4)

if(num > 999 and num < 10000):
displayBit(2,num//10%10)
displayBit(3,num//100%10)
displayBit(4,num//1000)

pwm_r = PWM(Pin(9))
pwm_g = PWM(Pin(10))
pwm_b = PWM(Pin(11))

pwm_r.freq(1000)
pwm_g.freq(1000)
pwm_b.freq(1000)

def light(red, green, blue):
pwm_r.duty_ul6(red)
pwm_g.duty_ul6(green)
pwm_b.duty_ul6(blue)

Ultrasonic sensor detects distances, the unit is cm
def getDistance(trigger, echo):
Produces 10us square wave
trigger.low() #Pull the trigger pin low
utime.sleep_us(2)
trigger.high()
utime.sleep_us(10)#Pull the trigger pin high for 10us before pulling the trigger pin low
trigger.low()

while echo.value() == 0: #Create a while loop to check whether the value of echo pin is 0 or not, and record
the time

241

Ml
o

www.keyestudio.com

start = utime.ticks_us()

while echo.value() == 1: #Create a while loop to check whether the value of echo pin is 1 or not, and record

the time

end = utime.ticks_us()

d = (end - start) * 0.0343 / 2 #Multiply the journey time (end-start) by the speed of sound (343.2 m/s, which

is 0.0343 cm per microsecond), the product of that equation is divided by two

return d

Configure the pins
trigger = Pin(20, Pin.OUT)
echo = Pin(19, Pin.IN)

buzzer = PWM(Pin(16))

def playtone(frequency):
buzzer.duty_u16(1000)
buzzer.freq(frequency)

def bequiet():
buzzer.duty_u16(0)

Main program
InitDigitalTube()
while True:
distance = int(getDistance(trigger, echo))
ShowNum(distance)
if distance <= 10:
playtone(880)
utime.sleep(0.1)
bequiet()
light(65535, 0, 0)
elif distance <= 20:
playtone(532)
utime.sleep(0.2)
bequiet()
light(0, 0, 65535)
else:
light(0, 65535, 0)

Code Explanation

1. Set the frequencies of sound and the color of the LED by changing

242

£

www.keyestudio.com

distances.
2. To facilitate the control of the distances of the obstacle, we can adjust

the range of distance in the above code according to the actual situation.

Test Result

Connect the components according to the connection diagram and run the
code. When the ultrasonic sensor detects an obstacle at different distances,
the buzzer on the speaker module will produce different frequencies of
sound, the RGB will show different colors, and the measured distances are

displayed on the 4-digit tube display.

243

£

www.keyestudio.com

Project 35: IR Remote Control

Introduction

In the previous experiments, we learned to turn on or turn off the LED,
adjust the brightness of a light through PWM, and how to use the infrared
receiver module. So in this experiment, we use an infrared remote control
to control an LED module.

When we receive a value, we set the PWM value by the corresponding

button value, thus you can adjust the brightness. Control the LED to turn

244

Ml
o

www.keyestudio.com

on or turn off is in the same way. If we want to use the same button to

control the LED to turn on or turn off, we can achieve it through the code.

Components

Raspberry Pi

Keyestudio

Raspberry Pi White LED
Pico IR Receiver*1
Pico Board*1 Module*1
Shield*1
= —
MicroUSB Remote 3P Dupont
Cable*1 Control*1 Wire*2

Connection Diagram

245

Ml
o

www.keyestudio.com

= & __ ::oooooooooooooo

cncu (aau

SPI0

Ecwﬂ :
2

12co

Ir receiver

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 35
* IR remote control
* http://www.keyestudio.com
import time
from machine import Pin

led = Pin(14, Pin.OUT)
ird = Pin(16,Pin.IN)

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2":

"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5":

"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

Power_OUT
RESET,

fritzing

"LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":

"LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":

"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",
"Left":

"LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":

"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",
" "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait=1
complete=0
seq0 =]

246

£

www.keyestudio.com

seql =]

while wait == 1:
if ird.value() == 0:
wait=0
while wait == 0 and complete == 0:
start = time.ticks_us()
while ird.value() == 0:
ms1 = time.ticks_us()
diff = time.ticks_diff(ms1,start)
seq0.append(diff)

while ird.value() == 1 and complete ==

ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:
complete=1
seql.append(diff)
code=""

for val in seql:

if val < 2000:
if val < 700:
code +="L"
else:
code +="H"

print(code)
command =""
for k,v in act.items():
if code == v:
command = k
if command =="":
command = code

return command

flag = False
while True:
global flag
command = read_ircode(ird)
printf(command,end=" ")
print(flag, end =" ")
if command == "0Ok":
if flag == True:
led.value(1)
flag = False

247

£

www.keyestudio.com

print("led on")
else:
led.value(0)
flag = True
print("led off")
time.sleep(0.1)

Code Explanation

1. We set a Boolean variable here, it has only two possible values: True or
False.

2. When we press the “OK" button, the Shell will show “OK" . Then we
set a Boolean variable (flag) to True, the LED will light up. If it is False, the
LED will go off. If we set it to False after lighting up the LED, press “OK"

again to turn off the LED.

Test Result
Wire up, run the code and look at the Shell. Press keys on the IR remote
control, the Shell will show values. Press “OK” to turn on the LED, and press

it again to turn off the LED.

248

£

www.keyestudio.com

| shell 3¢ |

v

>>>

Ok False led off
Ck True led on
0k False led off
0k True 1led on
Ck False led off
0k True 1led on
0k False led off

Project 36: Comprehensive Experiment

Introduction

We did a lot of experiments, and for each one we needed to re-upload the
code, so can we achieve different functions through an experiment? In this
experiment, we will use an external button module to achieve different

functions.

249

Ml
o

www.keyestudio.com

Components

Raspberry
Pi Pico
Board*1

Raspberry Pi
Pico

Shield*1

Keyestudio
White LED
Module*1

Keyestudio
Button

Module*1

Potentiometer*1

Keyestudio

Rotary

Keyestudio | Keyestudio | HC-SR04 Keyestudio
MicroUSB
IR Joystick Ultrasoic 6812 RGB
Cable*1
Receiver*1 | Module*1 Sensor*1 Module*1
3P Dupont | 4P Dupont | 5P Dupont Remote
Wire*5 Wire*1 Wire*1 Control*1

250

Ml
o

www.keyestudio.com

Connection Diagram

-
[
g
2
=
S
3
s
g
]

6812 RGB LED

fritzing

Test Code

* Keyestudio 24 in 1 Starter Kit for Raspberry Pi Pico
* lesson 36
* Comprehensive experiment
* http://www.keyestudio.com
from machine import Pin, PWM
import array, time
import random
import rp2

potentiometer = machine.ADC(28)
button = Pin(16, Pin.IN)

led = PWM(Pin(14))
led.freq(1000)

251

£

www.keyestudio.com

ird = Pin(11,Pin.IN)

B = machine.Pin(22, machine.Pin.IN)

X = machine.ADC(26)

Y = machine.ADC(27)

configure the pins used with the ultrasonic sensor
trigger = Pin(6, Pin.OUT)

echo = Pin(7, Pin.IN)

Configure the number of sk6812 LEDs, pins and brightness.
NUM_LEDS =4

PIN_NUM =15

brightness = 0.2

act = {"1": "LLLLLLLLHHHHHHHHLHHLHLLLHLLHLHHH","2": "LLLLLLLLHHHHHHHHHLLHHLLLLHHLLHHH","3":
"LLLLLLLLHHHHHHHHHLHHLLLLLHLLHHHH",

"4": "LLLLLLLLHHHHHHHHLLHHLLLLHHLLHHHH","5": "LLLLLLLLHHHHHHHHLLLHHLLLHHHLLHHH","6":
"LLLLLLLLHHHHHHHHLHHHHLHLHLLLLHLH",

"7": "LLLLLLLLHHHHHHHHLLLHLLLLHHHLHHHH","8": "LLLLLLLLHHHHHHHHLLHHHLLLHHLLLHHH","9":

"LLLLLLLLHHHHHHHHLHLHHLHLHLHLLHLH",

"0": "LLLLLLLLHHHHHHHHLHLLHLHLHLHHLHLH","Up": "LLLLLLLLHHHHHHHHLHHLLLHLHLLHHHLH","Down":
"LLLLLLLLHHHHHHHHHLHLHLLLLHLHLHHH",

"Left": "LLLLLLLLHHHHHHHHLLHLLLHLHHLHHHLH","Right":
"LLLLLLLLHHHHHHHHHHLLLLHLLLHHHHLH","Ok": "LLLLLLLLHHHHHHHHLLLLLLHLHHHHHHLH",

" "LLLLLLLLHHHHHHHHLHLLLLHLHLHHHHLH","#": "LLLLLLLLHHHHHHHHLHLHLLHLHLHLHHLH"}

def read_ircode(ird):
wait=1
complete=0
seq0 =]
seql =]

while wait == 1:
if ird.value() == 0:
wait=0
while wait == 0 and complete == 0:
start = time.ticks_us()
while ird.value() == 0:
ms1 = time.ticks_us()
diff = time.ticks_diff(ms1,start)
seq0.append(diff)
while ird.value() == 1 and complete ==
ms2 = time.ticks_us()
diff = time.ticks_diff(ms2,ms1)
if diff > 10000:

complete=1

252

£

www.keyestudio.com

seql.append(diff)

code =

for val in seql:

if val < 2000:
if val < 700:
code +="L"
else:
code +="H"

print(code)
command =""
for k,v in act.items():
if code == v:
command = k
if command =="":
command = code

return command

@rp2.asm_pio(sideset_init=rp2.P1I0.OUT_LOW, out_shiftdir=rp2.PIO.SHIFT_LEFT, autopull=True, pull_thresh=24)
def sk6812():

T1=2

T2=5

T3=3

wrap_target()

label("bitloop")

out(x, 1) .side(0) [T3-1]
jmp(not_x, "do_zero") .side(1) [T1-1]
jimp("bitloop") .side(1) [T2-1]
label("do_zero")

nop() .side(0) [T2-1]
wrap()

Create the StateMachine with the sk6812 program, outputting on Pin(16).
sm = rp2.StateMachine(0, sk6812, freq=8_000_000, sideset_base=Pin(PIN_NUM))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("1", [0 for _ in range(NUM_LEDS)])

def pixels_show():
dimmer_ar = array.array("1", [0 for _ in range(NUM_LEDS)])

253

£

www.keyestudio.com

fori,c in enumerate(ar):
r = int(((c >> 8) & OxFF) * brightness)
g = int(((c >> 16) & OxFF) * brightness)
b = int((c & OxFF) * brightness)
dimmer_ar[i] = (g<<16) + (r<<8) + b

sm.put(dimmer_ar, 8)

time.sleep_ms(10)

def pixels_set(i, color):
ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]

Ultrasonic sensor detects distances, the unit is cm
def getDistance(trigger, echo):
Produces 10us square wave
trigger.low() # Pull the trigger pin low
time.sleep_us(2)
trigger.high()
time.sleep_us(10)# Pull the trigger pin high for 10us before pulling the trigger pin low
trigger.low()

while echo.value() == 0: # Create a while loop to check whether the value of echo pin is 0 or not, and record
the time
start = time.ticks_us()
while echo.value() == 1: # Create a while loop to check whether the value of echo pin is 1 or not, and record
the time
end = time.ticks_us()
d = (end - start) * 0.0343 / 2 # Multiply the journey time (end-start) by the speed of sound (343.2 m/s, which
is 0.0343 cm per microsecond), the product of that equation is divided by two
returnd

keys =0
nums =0

def toggle_handle(pin):
global keys
keys += 1

button.irq(trigger = Pin.IRQ_FALLING, handler = toggle_handle)
def show6812():
R = random.randint(0,255)

G = random.randint(0,255)
B = random.randint(0,255)

254

£

www.keyestudio.com

foriin range(NUM_LEDS):
pixels_set(i, (R, G, B))
pixels_show()

time.sleep(0.3)

def IRreceive():
command = read_ircode(ird)

print(command)

def showJoystick():
B_value = B.value()
X_value = X.read_u16()
Y_value = Y.read_u16()
print("button:",end="")

print(B_value,end =" ")
print("X:",end="")
print(X_value,end =" ")

print("Y:",end="")
print(Y_value)
time.sleep(0.1)

def adjustLight():
pot_value = potentiometer.read_u16()
print(pot_value)
led.duty_ul6(pot_value)
time.sleep(0.1)

def showDistance():
distance = getDistance(trigger, echo)
print("The distance is : {:.2f} cm".format(distance))
time.sleep(0.1)

while True:

nums = keys % 5

print(nums)

if nums == 0:
show6812()

elif nums == 1:
IRreceive()

elif nums == 2:
showlJoystick()

elif nums == 3:
adjustLight()

elif nums == 4:

255

£

www.keyestudio.com

showDistance()

Code Explanation

1. Each time the button on the button module is pressed, the original value
of the "keys +" will plus 1. The value divided by 5, it will get a remainder (0,
1, 2, 3, 4). Different remainders correspond to different functions. We will
create 5 functions to achieve them.

2. Add or reduce sensors or modules when wiring, then change the code

to achieve the function that we want.

Test Result

Wire up the components, supply power via a USB cable and run the code.

In the beginning, the values of “keys +" and the remainder are 0, the LEDs

256

Ml
o

www.keyestudio.com

on the RGB module randomly displays colors.

Shell 3 |

w

000000000

Press the button, the LEDs will go off, the values of “keys +"” and the
remainder are 1. This implements the function of sending information from
the infrared receiver module. If we put the infrared remote control towards
the receiver module, press a button, the receiver module receives

information, as illustrated below.

Shell 3 |

1
Left
1

i
Down
i

Ck

i

¥

Press the button again, the values of “keys +" and the remainder are 2,
which can read the analog values of X axis and Y axis of the joystick module.
(Note: because there is no signal to return to the “IRreceive()” function, we

need to press any button on the remote control again at this point). The

257

Ml
o

www.keyestudio.com

values of the KEY interface (Z axis) are shown below.

Shell 2

-
butto
2
butto
2
butto
2
butto

<
butto

n: 0 X: 32920

n: 1 X: 32840

n: 1 X: 32304

n: 1 X: 32824

n: 1 X: 32840

As shown in the figure, press the button again, the values of “keys +” and

the remainder are 3. We can use the external adjustable potentiometer

module to adjust the PWM values of the LED (GP14) interface, then the

brightness of the LED on the white LED module will change.

Shell ¥
65535
3
56373
3
46139
3
35288
3

21477

Press the button again, the values of "keys +” and the remainder are 4. We

can use the ultrasonic sensor to detect distances, they are displayed on the

Shell

Sh

ell ¥

=

The distance
4

The distance
4

The distance
4

The distance
4

The distance

iz ! 6.

is . 6.

is ¢

iz !

iz . 6.

CIk

CIm

CIh

CIh

CIh

Press the button again, the value of “keys +"” is 5 and the remainder is 0, the

LEDs on the RGB module will blink again.

258

Ml
o

www.keyestudio.com

6. Resources:

Download test code:

https://fs.keyestudio.com/KS3021

259

	1.Introduction
	2.Kit List
	Keyestudio 8002b Audio Power Amplifier

	3.Raspberry Pi Pico and Thonny
	3.1.Raspberry Pi Pico
	3.2.MicroPython IDE-----Thonny
	Download and Burn Firmware
	Download and Install Thonny IDE

	3.3 Install Drivers
	3.4 Thonny User Interface
	3.5 Add Modules
	3.6 Keyestudio Raspberry Pico IO Shield

	4.Projects
	Project 1: Lighting up LED
	Project 2: Traffic Light Module
	Project 3: Button Sensor
	Project 4: Obstacle Avoidance Sensor
	Project 5: Tilt Module
	Project 6: Reed Switch Module
	Project 7: PIR Motion Sensor
	Project 8: Active Buzzer
	Project 9: 8002b Audio Power Amplifier
	Project 10: RGB Module
	Project 11: Potentiometer
	Project 12: Sound Sensor
	Project 13: Photoresistor
	Project 14: NTC-MF52AT Thermistor
	Project 15 Thin-film Pressure Sensor
	Project 16: Joystick Module
	Project 17: SK6812 RGB Module
	Project 18: Rotary Encoder
	Project 19: Servo Control
	Project 20: Ultrasonic Sensor
	Project 21: IR Receiver Module
	Project 22: DS1307 Clock Module
	Project 23: TM1650 4-Digit Tube Display
	Project 24: HT16K33_8X8 Dot Matrix Module

	5. Comprehensive Experiments
	Project 25: Breathing LED
	Project 26: Button-controlled LED
	Project 27: Alarm Experiment
	Project 28: PIR Motion Sensor
	Project 29: Speaker Module
	Project 30: Rotary Encoder
	Project 31: Rotary Potentiometer
	Project 32: Sound Activated Light
	Project 33: RGB Module
	Project 34: Ultrasonic Sensor
	Project 35: IR Remote Control
	Project 36: Comprehensive Experiment

	6. Resources:

